MATH 1553, C.J. JANKOWSKI MIDTERM 1

Name		Section	
------	--	---------	--

Please **read all instructions** carefully before beginning.

- You have 50 minutes to complete this exam.
- There are no aids of any kind (calculators, notes, text, etc.) allowed.
- Please show your work unless specified otherwise. A correct answer without appropriate work may be given little or no credit.
- You may cite any theorem proved in class or in the sections we covered in the text.
- Good luck!

Scoring Page

Please do not write on this page.

1	2	3	4	5	Total

a) Com	pute	3 -2 1	$\binom{2}{0}{\binom{1}{-3}}$				
b) If <i>A</i> is a 2 × 3 matrix with 2 pivots, then the set of solutions to $Ax = 0$ is a: (circle one answer) point line 2-plane 3-plane in: (circle one answer) R R ² R ³ .							
	True or false. Circle T if the statement is always true, and circle F otherwise. You do not need to justify your answer.						
c)	Т	F	If a system of linear equations has more variables than equations, then the system must have infinitely many solutions.				
d)	Т	F	If <i>A</i> is an $m \times n$ matrix and <i>A</i> has a pivot in every column, then the equation $Ax = b$ has a solution for each <i>b</i> in \mathbb{R}^m .				
e)	Т	F	The three vectors $\begin{pmatrix} 1\\0\\0 \end{pmatrix}$, $\begin{pmatrix} 1\\1\\0 \end{pmatrix}$, and $\begin{pmatrix} -1\\0\\1 \end{pmatrix}$ span \mathbb{R}^3 .				
f)	Т	F	If u , v , and w are nonzero vectors in \mathbb{R}^2 , then $\text{Span}\{u, v, w\}$ is \mathbb{R}^2 .				

Johnny Rico believes that the secret to the universe can be found in the system of two linear equations in x and y given by

$$x - y = h$$
$$3x + hy = 4$$

where h is a real number.

- **a)** Find all values of *h* (if any) which make the system inconsistent. Briefly justify your answer.
- **b)** Find all values of *h* (if any) which make the system have a unique solution. Briefly justify your answer.

a) Solve the system of equations by putting an augmented matrix into reduced row echelon form. Clearly indicate which variables (if any) are free variables.

$$\begin{aligned} x_1 + 2x_2 + 2x_3 - x_4 &= 4 \\ 2x_1 + 4x_2 + x_3 - 2x_4 &= -1 \\ -x_1 - 2x_2 - x_3 + x_4 &= -1 \end{aligned}$$

b) Write the set of solutions to

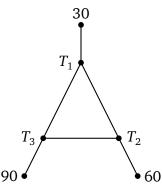
$$x_1 + 2x_2 + 2x_3 - x_4 = 0$$

$$2x_1 + 4x_2 + x_3 - 2x_4 = 0$$

$$-x_1 - 2x_2 - x_3 + x_4 = 0$$

in parametric vector form.

The diagram below represents the temperature at points along wires, in celcius.



Let T_1 , T_2 , T_3 be the temperatures at the interior points. Assume the temperature at each interior point is the average of the temperatures of the three adjacent points.

- a) Write a system of three linear equations whose solution would give the temperatures T_1 , T_2 , and T_3 . Do not solve it.
- b) Write the system as a vector equation. Do not solve it.
- c) Write a matrix equation Ax = b that represents this system. Specify every entry of *A*, *x*, and *b*. Do not solve it.

Problem 5.

Write an augmented matrix corresponding to a system of two linear equations in
three variables x_1 , x_2 , x_3 , whose solution set is the span of $\begin{pmatrix} -4\\1\\0 \end{pmatrix}$. Briefly justify your answer.
Briefly justify your answer.

[Scratch work]