
Math 1553 Worksheet §5.3, 5.5

1. Answer yes / no / maybe. In each case, A is a matrix whose entries are real.

a) If A is a 3 × 3 matrix with characteristic polynomial −λ(λ − 5)2, then the 5-
eigenspace is 2-dimensional.

b) If A is an invertible 2× 2 matrix, then A is diagonalizable.

c) Can a 3× 3 matrix A have a non-real complex eigenvalue with multiplicity 2?

d) Can a 3× 3 matrix A have eigenvalues 3, 5, and 2+ i?

Solution.

a) Maybe. The geometric multiplicity of λ = 5 can be 1 or 2. For example, the

matrix

 

5 0 0
0 5 0
0 0 0

!

has a 5- eigenspace which is 2-dimensional, whereas the

matrix

 

5 1 0
0 5 0
0 0 0

!

has a 5-eigenspace which is 1-dimensional. Both matrices

have characteristic polynomial −λ(λ− 5)2.

b) Maybe. The identity matrix is invertible and diagonalizable, but the matrix
�

1 1
0 1

�

is invertible but not diagonalizable.

c) No. If c is a (non-real) complex eigenvalue with multiplicity 2, then its conju-
gate c is an eigenvalue with multiplicity 2 since complex eigenvalues always
occur in conjugate pairs. This would mean A has a characteristic polynomial
of degree 4 or more, which is impossible for a 3× 3 matrix.

d) No. If 2+ i is an eigenvalue then so is its conjugate 2− i.

2. Let A=

 

8 36 62
−6 −34 −62

3 18 33

!

.

The characteristic polynomial for A is −λ3 + 7λ2 − 16λ+ 12, and λ− 3 is a factor.
Decide if A is diagonalizable. If it is, find an invertible matrix P and a diagonal
matrix D such that A= PDP−1.

Solution.
By polynomial division,

−λ3 + 7λ2 − 16λ+ 12
λ− 3

= −λ2 + 4λ− 4= −(λ− 2)2.



Thus, the characteristic poly factors as−(λ−3)(λ−2)2, so the eigenalues are λ1 = 3
and λ2 = 2.

For λ1 = 3, we row-reduce A− 3I :

 

5 36 62
−6 −37 −62
3 18 30

!

R1↔R3−−−−−−→
(New R1)/3

 

1 6 10
−6 −37 −62
5 36 62

!

R2=R2+6R1−−−−−−→
R3=R3−5R1

 

1 6 10
0 −1 −2
0 6 12

!

R3=R3+6R2−−−−−−−→
then R2=−R2

 

1 6 10
0 1 2
0 0 0

!

R1=R1−6R2−−−−−−→

 

1 0 −2
0 1 2
0 0 0

!

.

Therefore, the solutions to
�

A− 3I 0
�

are x1 = 2x3, x2 = −2x3, x3 = x3.

 

x1
x2
x3

!

=

 

2x3
−2x3

x3

!

= x3

 

2
−2
1

!

. The 3-eigenspace has basis

( 

2
−2
1

!)

.

For λ2 = 2, we row-reduce A− 2I :

 

6 36 62
−6 −36 −62
3 18 31

!

rref





1 6 31
3

0 0 0
0 0 0



 .

The solutions to
�

A− 2I 0
�

are x1 = −6x2 −
31
3 x3, x2 = x2, x3 = x3.

 

x1
x2
x3

!

=





−6x2 −
31
3 x3

x2
x3



= x2

 −6
1
0

!

+ x3





−31
3

0
1



 .

The 2-eigenspace has basis







 −6
1
0

!

,





−31
3

0
1











.

Therefore, A= PDP−1 where

P =





2 −6 −31
3

−2 1 0
1 0 1



 D =

 

3 0 0
0 2 0
0 0 2

!

.

Note that we arranged the eigenvectors in P in order of the eigenvalues 3, 2, 2, so
we had to put the diagonals of D in the same order.



3. Let A=
�

1 2
−2 1

�

.

a) Find all eigenvalues and eigenvectors of A.

b) Write A= PC P−1, where C is a rotation followed by a scale. Describe what A
does geometrically. Draw a picture.

Solution.
a) The characteristic polynomial is

λ2 − Tr(A)λ+ det(A) = λ2 − 2λ+ 5

λ2 − 2λ+ 5= 0 ⇐⇒ λ=
2±
p

4− 20
2

=
2± 4i

2
= 1± 2i.

For the eigenvalue λ= 1− 2i, we row-reduce
�

A− (1− 2i)I 0
�

.
�

2i 2 0
−2 2i 0

�

R1=R1·1/2i
−−−−−−→

�

1 −i 0
−2 2i 0

�

R2=R2+2R1−−−−−−→
�

1 −i 0
0 0 0

�

.

So x1 = i x2 and x2 = x2. A corresponding eigenvector is v =
�

i
1

�

, and any

nonzero complex multiple of v will also be an eigenvector.
(If we used the 2× 2 trick from the 5.5 slides, we would have found that an

eigenvector is
�

2
−2i

�

, which is really just −2i times the eigenvector v above.)

From the correspondence between conjugate eigenvalues and their eigenvec-
tors, we know (without doing any additional work!) that for the eigenvalue

λ= 1+ 2i, a corresponding eigenvector is w= v =
�

−i
1

�

.

b) We use λ= 1− 2i and its associated v =
�

i
1

�

.

A= PC P−1 where P =
�

Re(v) Im(v)
�

=
�

0 1
1 0

�

and

C =
�

Re(λ) Im(λ)
−Im(λ) Re(λ)

�

=
�

1 −2
2 1

�

.

The scale is by a factor of |λ|= |1+2i|=
p

12 + 22 =
p

5. If we factor this out
of C we get

C =
p

5

� 1p
5
− 2p

5
2p
5

1p
5

�

.

We see cos(θ ) = 1p
5

and sin(θ ) = 2p
5
, so tan(θ ) = 2 and θ = arctan(2).

C is rotation by the angle arctan(2), followed by scaling by a factor of
p

5.

See the [interactive] demo for how A acts geometrically.

http://people.math.gatech.edu/~jrabinoff6/1718F-1553/demos/similarity.html?C=0,1:1,0&B=1,-2:2,1&BName=C&dynamics=on&reference=circle&range2=10


***Note: there are multiple answers possible for part b).
For example, the 2× 2 trick from the 5.5 slides says that if λ is an eigenvalue

of A, then one eigenvector is
�

b
−a

�

where
�

a b
�

is the first row of A−λI .

Row 1 of A−λI was
�

2i 2
�

, so
�

2
−2i

�

as an eigenvector.

This would give us P =
�

2 0
0 −2

�

rather than P =
�

0 1
1 0

�

. However, it would

still be the case that A= PC P−1 since

PC P−1 =
�

2 0
0 −2

��

1 −2
2 1

�

�

1
2 0
0 −1

2

�

=
�

1 2
−2 1

�

= A.

Supplemental Problems

For those who want additional practice problems after completing the worksheet,
here are some extra practice problems.

1. Let A and B be 3× 3 real matrices. Answer yes / no / maybe:

a) If A and B have the same eigenvalues, then A is similar to B.

b) If A and B both have eigenvalues −1,0, 1, then A is similar to B.

c) If A is diagonalizable and invertible, then A−1 is diagonalizable.

Solution.

a) Maybe. For example,
�

0 1
0 0

�

and
�

0 0
0 0

�

have the same eigenvalues (λ = 0

with alg. multiplicity 2) but are not similar, whereas
�

0 1
0 0

�

is similar to itself.

b) Yes. In this case, A and B are 3 × 3 matrices with 3 distinct eigenvalues and

thus automatically diagonalizable, and each is similar to D =

 −1 0 0
0 0 0
0 0 1

!

.

Since A and D are similar, and B and D are similar, it follows that A and B are
similar.

A= PDP−1 B =QDQ−1 A= PDP−1 = PQ−1BQP−1 = PQ−1B(PQ−1)−1.

c) Yes. If A = PDP−1 and A is invertible then its eigenvalues are all nonzero, so
the diagonal entries of D are nonzero and thus D is invertible (pivot in every
diagonal position). Thus, A−1 = (PDP−1)−1 = (P−1)−1D−1P−1 = PD−1P−1.



2. Give an example of a non-diagonal 2 × 2 matrix which is diagonalizable but not
invertible. Justify your answer.

Solution.
�

1 1
0 0

�

is not invertible (row of zeros) but is diagonalizable since its has two dis-

tinct eigenvalues 0 and 1 (it is triangular, so its diagonals are its eigenvalues)

3. Suppose A is a 7 × 7 matrix with four distinct eigenvalues. One eigenspace has
dimension 2, while another eigenspace has dimension 3. Is it possible that A is not
diagonalizable?

Solution.
A must be diagonalizable. It is a general fact that every eigenvalue of a matrix has
a corresponding eigenspace which is at least 1-dimensional. Given this and the fact
that A has four total eigenvalues, we see the sum of dimensions of the eigenspaces
of A is at least 2 + 3 + 1 + 1 = 7, and in fact must equal 7 since that is the max
possible for a 7× 7 matrix. Therefore, A has 7 linearly independent eigenvectors
and is therefore diagonalizable.

4. Let A=

 

4 −3 3
3 4 −2
0 0 2

!

.

a) Find all (complex) eigenvalues and eigenvectors of A.

b) Write A= PC P−1, where C is a block diagonal matrix, as in the slides near the
end of section 5.5.

c) What does A do geometrically? Draw a picture.

Solution.

a) First we compute the characteristic polynomial by expanding cofactors along
the third row:

f (λ) = det

 

4−λ −3 3
3 4−λ −2
0 0 2−λ

!

= (2−λ)det
�

4−λ −3
3 4−λ

�

= (2−λ)
�

(4−λ)2 + 9
�

= (2−λ)(λ2 − 8λ+ 25).

Using the quadratic equation on the second factor, we find the eigenvalues

λ1 = 2 λ2 = 4− 3i λ2 = 4+ 3i.

Next compute an eigenvector with eigenvalue λ1 = 2:

A− 2I =

 

2 −3 3
3 2 −2
0 0 0

!

RREF
−−→

 

1 0 0
0 1 −1
0 0 0

!

.



The parametric form is x = 0, y = z, so the parametric vector form of the
solution is

 

x
y
z

!

= z

 

0
1
1

!

eigenvector
v1 =

 

0
1
1

!

.

Now we compute an eigenvector with eigenvalue λ2 = 4− 3i:

A= (4− 3i)I =

 

3i −3 3
3 3i −2
0 0 3i − 2

!

R1←→R2−−−−→

 

3 3i −2
3i −3 3
0 0 3i − 2

!

R2=R2−iR1−−−−−−→

 

3 3i −2
0 0 3+ 2i
0 0 3i − 2

!

R2=R2÷(3+2i)
−−−−−−−−→

 

3 3i −2
0 0 1
0 0 3i − 2

!

row replacements
−−−−−−−−−→

 

3 3i 0
0 0 1
0 0 0

!

R1=R1÷3
−−−−−→

 

1 i 0
0 0 1
0 0 0

!

.

The parametric form of the solution is x = −i y, z = 0, so the parametric vector
form is

 

x
y
z

!

= y

 −i
1
0

!

eigenvector
v2 =

 −i
1
0

!

.

An eigenvector for the complex conjugate eigenvalue λ2 = 4+3i is the complex

conjugate eigenvector v2 =

 

i
1
0

!

.

b) According to the “block-diagonalization” theorem, we have A= PC P−1 where

P =

 | | |
Re v2 Im v2 v1
| | |

!

=

 

0 −1 0
1 0 1
0 0 1

!

and

C =

 

Reλ2 Imλ2 0
− Imλ2 Reλ2 0

0 0 λ1

!

=

 

4 −3 0
3 4 0
0 0 2

!

.

(I’ve ordered the eigenvalues in this way to make the picture look nicer in my
“z is up” coordinate system.)

c) The matrix C scales by 2 in the z-direction, and rotates by arg(−λ2) = arctan(3/4)∼
.6435 radians and scales by |λ2|=

p
43 + 33 = 5 in the x y-directions. The ma-

trix A does the same thing, with respect to the basis
( 

0
1
0

!

,

 −1
0
0

!

,

 

0
1
1

!)

of columns of P. [interactive]

http://people.math.gatech.edu/~jrabinoff6/1718F-1553/demos/similarity.html?C=0,-1,0:1,0,1:0,0,1&B=4,-3,0:3,4,0:0,0,2&BName=C&dynamics=on&reference=circle&range2=20

