Section 5.3

Diagonalization



Motivation

Difference equations

Many real-word linear algebra problems have the form:
2
vi=Aw, w=Av=Aw, wv=Awn= A3vo, cee Vp=Av,_1 = A"v.

This is called a difference equation.
Our toy example about rabbit populations had this form.

The question is, what happens to v, as n — c0?

» Taking powers of diagonal matrices is easy!
» Taking powers of diagonalizable matrices is still easy!

» Diagonalizing a matrix is an eigenvalue problem.



Powers of Diagonal Matrices

If D is diagonal, then D" is also diagonal; its diagonal entries are the nth
powers of the diagonal entries of D:
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Powers of Matrices that are Similar to Diagonal Ones

What if A is not diagonal?

Example

Let A= 12 Compute A"
=\_1 4) pu .

In §5.2 lecture we saw that A is similar to a diagonal matrix:

o (21 (20
A= PDP™'  where P_<1 1) and D_<0 3).

Then
A? = (PDP')(PDP™') = PD(P~'P)DP~' = PDIDP™! = PD*P*
A* = (PDP™Y)(PD’P™') = PD(P™'P)D’P~" = PDID’P~! = PD*P}

A" — pp"p1 Closed formula in terms of n:

easy to compute \
Therefore \
A (2 1\(2 0 1 -1\ _ (2t —37 —2mly2.3"
T\l 1 0 3" -1 2 /) \2"-3" —2"4+2-.3" J°



Diagonalizable Matrices

Definition
An n x n matrix A is diagonalizable if it is similar to a diagonal matrix:

A= PDP™' for D diagonal.

,{ Important \

dll 0 0

0 d22 0
If A=PDP~ Y forD =] . o | then

0 0 dnn

de 0 - 0

0 db 0

A= pPD¥P =P , P!

0 ® oo @

So diagonalizable matrices are easy to raise to any power.



Diagonalization

~

\.

The Diagonalization Theorem

An n x n matrix A is diagonalizable if and only if A has n linearly independent
eigenvectors.

In this case, A = PDP~! for

A 0 -0
. | 0 X -+ 0
P = Vi Vo oo Vi D — . ,
| | :
0 O An
where vi, v, ..., v, are linearly independent eigenvectors, and A1, A2, ..., \, are

the corresponding eigenvalues (in the same order).

=~

Corollary «—a theorem that follows easily from another theorem
An n x n matrix with n distinct eigenvalues is diagonalizable.
The Corollary is true because eigenvectors with distinct eigenvalues are always

linearly independent. We will see later that a diagonalizable matrix need not
have n distinct eigenvalues though.



Diagonalization

Example

Problem: Diagonalize A = (_11 i)

The characteristic polynomial is
f(A) =A% — Tr(A) A +det(A) = A =51 +6 = (A — 2)(\ — 3).

Therefore the eigenvalues are 2 and 3. Let's compute some eigenvectors:

_ rref _
(A-2Nx=0 <<= <_1 ;)XIO’W‘"’"‘> (é 02>x:0

The parametric form is x = 2y, so v; = (f) is an eigenvector with eigenvalue 2.

— f —
(A-3Nx=0 <= (_i i)xzom <(1) 01>x:0

The parametric form is x =y, so v, = (J) is an eigenvector with eigenvalue 3.

The eigenvectors vi, v» are linearly independent, so the Diagonalization
Theorem says

P (21 (20
A=PDP™' for P_(l 1> D_<0 3).



Diagonalization

Another example

4 -3 0
Problem: Diagonalize A= |2 -1 0
1 -1 1

The characteristic polynomial is
f(A) =det(A—A)= -\ +4\7 —5X+2=—(A—1)’ (A —2).

Therefore the eigenvalues are 1 and 2, with respective multiplicities 2 and 1.
Let's compute the 1-eigenspace:

3 -3 0 e 10
(A-Dx=0 < (2 —2 0|x=0ww> [0 0 O0|x=0
1 -1 0 0 0 0

The parametric vector form is

X =Yy X 1 0
y=y — |y|=y|[1l]+2z]|O0
z = z z 0 1

Hence a basis for the 1-eigenspace is

1 0
81:{v1,vz} where v, = 1), V2—<0
0 1



Diagonalization

Another example, continued

4 -3 0
Problem: Diagonalize A= |2 -1 0
1 -1 1
Now let's compute the 2-eigenspace:
2 -3 0 rref 1 0 -3
(A-2x=0«<= |2 -3 0 |x=0ww [0 1 -2 |x=0
1 -1 -1 0 0 O
The parametric form is x = 3z, y = 2z, so an eigenvector with eigenvalue 2 is
3
vy = 2
1

The eigenvectors vi, vz, v3 are linearly independent: vi, v» form a basis for the
1-eigenspace, and vz is not contained in the l-eigenspace. Therefore the
Diagonalization Theorem says

1 0 3 1 0 0
A=PDP' for P=|1 0 2 D=|0 1 0
0 1 1 00 2

Note: In this case, there are three linearly independent eigenvectors, but only
two distinct eigenvalues.



Diagonalization

A non-diagonalizable matrix

Problem: Show that A = (é 1) is not diagonalizable.

This is an upper-triangular matrix, so the only eigenvalue is 1. Let's compute
the 1-eigenspace:

(A=Dx=0 (g é)x:o.

This is row reduced, but has only one free variable x; a basis for the
1-eigenspace is {((1))} So all eigenvectors of A are multiples of ((1))

Conclusion: A has only one linearly independent eigenvector, so by the “only
if” part of the diagonalization theorem, A is not diagonalizable.



Poll

Which of the following matrices are diagonalizable, and why?

v (52) & (02) <0 2)

Matrix A is not diagonalizable: its only eigenvalue is 2, and its 2-eigenspace is
spanned by (3).

Matrix B is diagonalizable because it is a 2 x 2 matrix with distinct eigenvalues.

Matrix C is already diagonal!



Diagonalization

Procedure

How to diagonalize a matrix A:

1.
2.
3.

Find the eigenvalues of A using the characteristic polynomial.
For each eigenvalue X\ of A, compute a basis B, for the \-eigenspace.

If there are fewer than n total vectors in the union of all of the eigenspace
bases By, then the matrix is not diagonalizable.

Otherwise, the n vectors vi, v», ..., v, in your eigenspace bases are linearly
independent, and A = PDP~! for

M 0 - 0
[ | 0 X -~ 0
P=lwv w - v, and D= . »
[ | :
0 0 An

where \; is the eigenvalue for v;.



Diagonalization

Proof

Why is the Diagonalization Theorem true?

A diagonalizable implies A has n linearly independent eigenvectors: Suppose
A = PDP~!, where D is diagonal with diagonal entries A1, X2, ..., \,. Let

Vi, Vo, ..., V, be the columns of P. They are linearly independent because P is
invertible. So Pe; = v;, hence P 1v; = ¢;.

Av; = PDP™'v; = PDe; = P(\ie;) = \iPei = \jvi.

Hence v; is an eigenvector of A with eigenvalue A;. So the columns of P form n
linearly independent eigenvectors of A, and the diagonal entries of D are the
eigenvalues.

A has n linearly independent eigenvectors implies A is diagonalizable: Suppose

A has n linearly independent eigenvectors vi, va, ..., v,, with eigenvalues
A1, A2,...,An. Let P be the invertible matrix with columns vi, va, ..., v,. Let
D= PlAP.

Dei = P APe; = P ' Av; = P71 (\ivi) = \iP 1y = Ner.

Hence D is diagonal, with diagonal entries A1, )\, ..., A\, Solving D = P~*AP
for A gives A= PDP~!.



Non-Distinct Eigenvalues

Definition
Let A be an eigenvalue of a square matrix A. The geometric multiplicity of A
is the dimension of the \-eigenspace.

Theorem
Let A\ be an eigenvalue of a square matrix A. Then

1 < (the geometric multiplicity of \) < (the algebraic multiplicity of ).

The proof is beyond the scope of this course.

Corollary

Let A be an eigenvalue of a square matrix A. If the algebraic multiplicity of \ is
1, then the geometric multiplicity is also 1.

The Diagonalization Theorem (Alternate Form)
Let A be an n x n matrix. The following are equivalent:
1. Ais diagonalizable.
2. The sum of the geometric multiplicities of the eigenvalues of A equals n.

3. The sum of the algebraic multiplicities of the eigenvalues of A equals n,
and the geometric multiplicity equals the algebraic multiplicity of each
eigenvalue.



Non-Distinct Eigenvalues

Examples

Example
If A has n distinct eigenvalues, then the algebraic multiplicity of each equals 1,
hence so does the geometric multiplicity, and therefore A is diagonalizable.

For example, A = <_11 i) has eigenvalues 2 and 3, so it is diagonalizable.
Example

4 -3 0
The matrix A= 2 —1 0 | has characteristic polynomial

1 -1 1

fO)=-(A—1>\-2).

The algebraic multiplicities of 1 and 2 are 2 and 1, respectively. They sum to 3.

We showed before that the geometric multiplicity of 1 is 2 (the 1-eigenspace
has dimension 2). The eigenvalue 2 automatically has geometric multiplicity 1.

Hence the geometric multiplicities add up to 3, so A is diagonalizable.



Non-Distinct Eigenvalues

Another example

Example

The matrix A = (1

0

It has one eigenvalue 1 of algebraic multiplicity 2.

i) has characteristic polynomial f(A\) = (A — 1)

We showed before that the geometric multiplicity of 1 is 1 (the 1-eigenspace
has dimension 1).

Since the geometric multiplicity is smaller than the algebraic multiplicity, the
matrix is not diagonalizable.



Applications to Difference Equations

1 0
Let D = (0 1/2>.

Fix a vector vp, and let vi = Dvy, vo = Dwy, etc., so v, = D"v.
Question: What happens to the v;'s for different choices of vy?
Answer: Note that D is diagonal, so
pr(2) = 1" 0 a\ _( a
b/ \ 0 1/2" b/ — \b/2" )"

So the x-coordinate of v, equals the x-coordinate of vy, and the y-coordinate
gets halved every time.



Applications to Difference Equations

Picture

o(2)= (6 +72) ()~ (%)

Vo
Vi
V2
v3
7}

1-eigenspace

1/2-eigenspace

So all vectors get “sucked into the x-axis,” which is the 1-eigenspace.



Applications to Difference Equations

More complicated example

Let A= (‘;’;i é?i)

Fix a vector vp, and let vi = Aw, va = Awvy, etc., so v, = A"v.
Question: What happens to the v;'s for different choices of vy?
Answer: We want to compute powers of A, so this is a diagonalization

question. The characteristic polynomial is

F) = X~ THA) A +det() = X — A+ 2= (A -1)(A—3).

We compute eigenvectors with eigenvalues 1 and 1/2 to be, respectively,

(1 (1
wy = 1 Wy = _1)-
. 1 (1 1 (1 0
Therefore, A= PDP for Pf(l _1) Df(o 1/2).

This is the same matrix D from before. Hence

Vo= A"vg = PD"P .



Applications to Difference Equations

Picture of the more complicated example

Recall: A" = PD"P~1 acts on the usual coordinates of vy in the same way that
D" acts on the B-coordinates, where B = {w1, wa}.

1/2-eigenspace 1l-eigenspace
Vo
V1
V2
V3
1Z

So all vectors get “sucked into the 1-eigenspace.”



