
Chapter 3

Determinants (3.1, 3.2, and some of 3.3)



Orientation

Recall: This course is about learning to:

I Solve the matrix equation Ax = b
We’ve said most of what we’ll say about this topic now.

I Solve the matrix equation Ax = λx (eigenvalue problem)
We are now aiming at this.

I Almost solve the equation Ax = b
This will happen later.

The next topic is determinants.

This is a completely magical function that takes a square matrix and gives you
a number.

It is a very complicated function—the formula for the determinant of a 10× 10
matrix has 3, 628, 800 summands—so instead of writing down the formula,
we’ll give other ways to compute it.

Today is mostly about the theory of the determinant; in the next lecture we will
focus on computation.



A Definition of Determinant

We will define determinants in terms of row operations. This immediately tells
us how to compute them.

Definition
The determinant of a n × n square matrix A is a number det(A) such that:

determinants are only for square matrices!

1. If you do a row replacement on A, the determinant doesn’t change.

2. If you scale a row of A by c, the determinant is multiplied by c.

3. If you do a row swap on A, the determinant is multiplied by −1.

4. det(In) = 1.

Example: (
2 1
1 4

) R1 ←→ R2
(

1 4
2 1

)
det = 7"

R2 = R2 − 2R1
(

1 4
0 −7

)
det = −7

R2 = R2 ÷−7 (
1 4
0 1

)
det = 1

R1 = R1 − 4R2
(

1 0
0 1

)
det = 1



A Definition of Determinant

We will define determinants in terms of row operations. This immediately tells
us how to compute them.

Definition
The determinant of a n × n square matrix A is a number det(A) such that:

determinants are only for square matrices!

1. If you do a row replacement on A, the determinant doesn’t change.

2. If you scale a row of A by c, the determinant is multiplied by c.

3. If you do a row swap on A, the determinant is multiplied by −1.

4. det(In) = 1.

This is a definition because it tells you how to compute the determi-
nant: row reduce!

It’s not at all obvious that you get the same determinant if you row reduce in
two different ways, but this is magically true!



Special Cases

If A has a zero row, then det(A) = 0.

Special Case 1

Why?  1 2 3
0 0 0
7 8 9

 R2 = −R2

 1 2 3
0 0 0
7 8 9


The determinant of the second matrix is negative the determinant of the first
(property 3), so

det

 1 2 3
0 0 0
7 8 9

 = − det

 1 2 3
0 0 0
7 8 9

 .

This implies the determinant is zero.



Special Cases

If A is upper-triangular, then the determinant is the product of the di-
agonal entries:

det

 a ? ?
0 b ?
0 0 c

 = abc.

Special Case 2

Upper-triangular means the only nonzero entries are on or above the diagonal.

Why?

I If one of the diagonal entries is zero, then the matrix has fewer than n
pivots, so the RREF has a row of zeros. (Row operations don’t change
whether the determinant is zero.)

I Otherwise, a ? ?
0 b ?
0 0 c

 scale by
a−1, b−1, c−1

 1 ? ?
0 1 ?
0 0 1

 row
replacements

 1 0 0
0 1 0
0 0 1


det = abc det = 1 det = 1



Computing Determinants
Method 1

Theorem
Let A be a square matrix. Suppose you do some number of row operations on
A to get a matrix B in row echelon form. Then

det(A) = (−1)r
(product of the diagonal entries of B)

(product of the scaling factors)
,

where r is the number of row swaps.

Why? Since B is in REF, it is upper-triangular, so its determinant is the
product of its diagonal entries. You changed the determinant by (−1)r and the
product of the scaling factors when going from A to B.

Remark
This is generally the fastest way to compute a determinant of a large matrix,
either by hand or by computer.

Row reduction is O(n3); cofactor expansion (next time) is O(n!) ∼ O(nn√n).

This is important in real life, when you’re usually working with matrices with a
gazillion columns.



Computing Determinants
Example

 0 −7 −4
2 4 6
3 7 −1

 R1 ←→ R2

 2 4 6
0 −7 −4
3 7 −1

 r = 1

R1 = R1 ÷ 2
 1 2 3

0 −7 −4
3 7 −1

 r = 1
scaling factors = 1

2

R3 = R3 − 3R1

 1 2 3
0 −7 −4
0 1 −10

 r = 1
scaling factors = 1

2

R2 ←→ R3

 1 2 3
0 1 −10
0 −7 −4

 r = 2
scaling factors = 1

2

R3 = R3 + 7R2

 1 2 3
0 1 −10
0 0 −74

 r = 2
scaling factors = 1

2

=⇒ det

 0 −7 −4
1 4 6
3 7 −1

 = (−1)2
1 · 1 · −74

1/2
= −148.



Computing Determinants
2× 2 Example

Let’s compute the determinant of A =

(
a b
c d

)
, a general 2× 2 matrix.

I If a = 0, then

det

(
a b
c d

)
= det

(
0 b
c d

)
= − det

(
c d
0 b

)
= −bc.

I Otherwise,

det

(
a b
c d

)
= a · det

(
1 b/a
c d

)
= a · det

(
1 b/a
0 d − c · b/a

)
= a · 1 · (d − bc/a) = ad − bc.

In both cases, the determinant magically turns out to be

det

(
a b
c d

)
= ad − bc.



Poll

Suppose that A is a 4× 4 matrix satisfying

Ae1 = e2 Ae2 = e3 Ae3 = e4 Ae4 = e1.

What is det(A)?

A. −1 B. 0 C. 1

Poll

These equations tell us the columns of A:

A =


0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0


You need 3 row swaps to transform this to the identity matrix.

So det(A) = (−1)3 = −1.



Determinants and Invertibility

Theorem
A square matrix A is invertible if and only if det(A) is nonzero.

Why?

I If A is invertible, then its reduced row echelon form is the identity matrix,
which has determinant equal to 1.

I If A is not invertible, then its reduced row echelon form has a zero row,
hence has zero determinant.



Determinants and Products

Theorem
If A and B are two n × n matrices, then

det(AB) = det(A) · det(B).

Why? If B is invertible, we can define

f (A) =
det(AB)

det(B)
.

Note f (In) = det(InB)/ det(B) = 1. Check that f satisfies the same properties
as det with respect to row operations. So

det(A) = f (A) =
det(AB)

det(B)
=⇒ det(AB) = det(A) det(B).

What about if B is not invertible?

Theorem

If A is invertible, then det(A−1) =
1

det(A)
.

Why? In = AB =⇒ 1 = det(In) = det(AB) = det(A) det(B).



Determinants and Transposes

Theorem
If A is a square matrix, then

det(A) = det(AT ),

where AT is the transpose of A.

Example: det

(
1 2
3 4

)
= det

(
1 3
2 4

)
.

As a consequence, det behaves the same way with respect to column
operations as row operations.

Corollary an immediate consequence of a theorem

If A has a zero column, then det(A) = 0.

Corollary

The determinant of a lower-triangular matrix is the product of the diagonal
entries.

(The transpose of a lower-triangular matrix is upper-triangular.)



Determinants and Volumes

Now we discuss a completely different description of (the absolute value of) the
determinant, in terms of volumes.

This is a crucial component of the change-of-variables formula in multivariable
calculus.

The columns v1, v2, . . . , vn of an n × n matrix A give you n vectors in Rn.
These determine a parallelepiped P.

v1

v2

P

v1

v2

v3

P

Theorem
Let A be an n × n matrix with columns v1, v2, . . . , vn, and let P be the
parallelepiped determined by A. Then

(volume of P) = | det(A)|.



Determinants and Volumes

Theorem
Let A be an n × n matrix with columns v1, v2, . . . , vn, and let P be the
parallelepiped determined by A. Then

(volume of P) = | det(A)|.

Sanity check: the volume of P is zero ⇐⇒ the columns are linearly dependent
(P is “flat”) ⇐⇒ the matrix A is not invertible.

Why is the theorem true? First you have to defined a “signed” volume, i.e. to
figure out when a volume should be negative.

Then you have to check that the volume behaves the same way under row
operations as the determinant does.

Note that the volume of the unit cube (the parallelepiped defined by the
identity matrix) is 1.



Determinants and Volumes
Examples in R2

det

(
1 −2
0 3

)
= 3

volume = 3

det

(
−1 1
1 1

)
= −2

(Should the volume really be −2?)

volume = 2

det

(
1 1
2 2

)
= 0

volume = 0



Determinants and Volumes

Theorem
Let A be an n × n matrix with columns v1, v2, . . . , vn, and let P be the
parallelepiped determined by A. Then

(volume of P) = | det(A)|.

This is even true for curvy shapes, in the following sense.

Theorem
Let A be an n × n matrix, and let T (x) = Ax . If S is any region in Rn, then

(volume of T (S)) = | det(A)| (volume of S).

If S is the unit cube, then T (S) is the parallelepiped defined by the columns of
A, since the columns of A are T (e1),T (e2), . . . ,T (en). In this case, the second
theorem is the same as the first.

e1

e2 S

vol(S) = 1

A =

(
1 1
−1 1

)
det(A) = 2

T

T (e1)

T (e2)

T (S)

vol(T (S)) = 2



Determinants and Volumes

Theorem
Let A be an n × n matrix, and let T (x) = Ax . If S is any region in Rn, then

(volume of T (S)) = | det(A)| (volume of S).

For curvy shapes, you break S up into a bunch of tiny cubes. Each one is
scaled by | det(A)|; then you use calculus to reduce to the previous situation!

e1

e2 S

vol(S) = 1

A =

(
1 1
−1 1

)
det(A) = 2

T

T (e1)

T (e2)

T (S)

vol(T (S)) = 2

S

vol(T (S)) = 2 vol(S)

T

T (S)



Determinants and Volumes
Example

Theorem
Let A be an n × n matrix, and let T (x) = Ax . If S is any region in Rn, then

(volume of T (S)) = | det(A)| (volume of S).

Example: Let S be the unit disk in R2, and let T (x) = Ax for

A =

(
2 1
1 2

)
.

Note that det(A) = 3.

S

vol(S) = π

A =

(
2 1
1 2

)
det(A) = 3

T

T (S)

vol(T (S)) = 3π



Summary

Magical Properties of the Determinant

1. There is one and only one function det : {square matrices} → R satisfying
the properties (1)–(4) on the second slide.

2. A is invertible if and only if det(A) 6= 0.

3. If we row reduce A to row echelon form B using r swaps, then

det(A) = (−1)r
(product of the diagonal entries of B)

(product of the scaling factors)
.

4. det(AB) = det(A) det(B) and det(A−1) = det(A)−1.

5. det(A) = det(AT ).

6. | det(A)| is the volume of the parallelepiped defined by the columns of A.

7. If A is an n × n matrix with transformation T (x) = Ax , and S is a subset
of Rn, then the volume of T (S) is | det(A)| times the volume of S . (Even
for curvy shapes S .)
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Orientation

Last time: we learned. . .

I . . . the definition of the determinant.

I . . . to compute the determinant using row reduction.
I . . . all sorts of magical properties of the determinant, like

I det(AB) = det(A) det(B)
I the determinant computes volumes
I nonzero determinants characterize invertability
I etc.

Today: we will learn. . .

I Special formulas for 2× 2 and 3× 3 matrices.

I How to compute determinants using cofactor expansions.

I How to compute inverses using determinants.



Determinants of 2 × 2 Matrices
Reminder

We already have a formula in the 2× 2 case:

det

(
a b
c d

)
= ad − bc.



Determinants of 3 × 3 Matrices

Here’s the formula:

det

 a11 a12 a13
a21 a22 a23
a31 a32 a33

 =
a11a22a33 + a12a23a31 + a13a21a32

− a13a22a31 − a11a23a32 − a12a21a33

How on earth do you remember this? Draw a bigger matrix, repeating the first
two columns to the right:

+

∣∣∣∣∣∣
a11 a12 a13 a11 a12
a21 a22 a23 a21 a22
a31 a32 a33 a31 a32

∣∣∣∣∣∣−
∣∣∣∣∣∣
a11 a12 a13 a11 a12
a21 a22 a23 a21 a22
a31 a32 a33 a31 a32

∣∣∣∣∣∣
Then add the products of the downward diagonals, and subtract the product of
the upward diagonals. For example,

det

 5 1 0
−1 3 2

4 0 −1

 =

∣∣∣∣∣∣
5 1 0 5 1
−1 3 2 −1 3

4 0 −1 4 0

∣∣∣∣∣∣ = −15 + 8 + 0− 0− 0− 1 = −8



Cofactor Expansions

When n ≥ 4, the determinant isn’t just a sum of products of diagonals. The
formula is recursive: you compute a larger determinant in terms of smaller ones.

First some notation. Let A be an n × n matrix.

Aij = ijth minor of A

= (n − 1)× (n − 1) matrix you get by deleting the ith row and jth column

Cij = (−1)i+j detAij

= ijth cofactor of A

The signs of the cofactors follow a checkerboard pattern:
+++ −−− +++ −−−
−−− +++ −−− +++
+++ −−− +++ −−−
−−− +++ −−− +++

 ± in the ij entry is the sign of Cij

Theorem
The determinant of an n × n matrix A is

det(A) =
n∑

j=1

a1jC1j = a11C11 + a12C12 + · · ·+ a1nC1n.

This formula is called cofactor expansion along the first row.



Cofactor Expansions
1× 1 Matrices

This is the beginning of the recursion.

det( a11 ) = a11.



Cofactor Expansions
2× 2 Matrices

A =

(
a11 a12
a21 a22

)
The minors are:

A11 =

(
a11 a12
a21 a22

)
= ( a22 ) A12 =

(
a11 a12
a21 a22

)
= ( a21 )

A21 =

(
a11 a12
a21 a22

)
= ( a12 ) A22 =

(
a11 a12
a21 a22

)
= ( a11 )

The cofactors are

C11 = + detA11 = a22 C12 = − detA12 = −a21
C21 = − detA21 = −a12 C22 = + detA22 = a11

The determinant is

detA = a11C11 + a12C12 = a11a22 − a12a21.



Cofactor Expansions
3× 3 Matrices

A =

 a11 a12 a13
a21 a22 a23
a31 a32 a33


The top row minors and cofactors are:

A11 =

 a11 a12 a13
a21 a22 a23
a31 a32 a33

 =

(
a22 a23
a32 a33

)
C11 = + det

(
a22 a23
a32 a33

)

A12 =

 a11 a12 a13
a21 a22 a23
a31 a32 a33

 =

(
a21 a23
a31 a33

)
C12 = − det

(
a21 a23
a31 a33

)

A13 =

 a11 a12 a13
a21 a22 a23
a31 a32 a33

 =

(
a21 a22
a31 a32

)
C13 = + det

(
a21 a22
a31 a32

)

The determinant is magically the same formula as before:

detA = a11C11 + a12C12 + a13C13

= a11 det

(
a22 a23
a32 a33

)
− a12 det

(
a21 a23
a31 a33

)
+ a13 det

(
a21 a22
a31 a32

)



Cofactor Expansions
Example

det

 5 1 0
−1 3 2

4 0 −1

 = 5 · det

 5 1 0
−1 −3 2

4 0 −1

− 1 · det

 5 1 0
−1 3 2

4 0 −1


+ 0 · det

 5 1 0
−1 3 2

4 0 −1


= 5 · det

(
3 2
0 −1

)
− 1 · det

(
−1 2
4 −1

)
+ 0 · det

(
−1 3
4 0

)
= 5 · (−3− 0)− 1 · (1− 8)

= −15 + 7 = −8



2n − 1 More Formulas for the Determinant

Recall: the formula

det(A) =
n∑

j=1

a1jC1j = a11C11 + a12C12 + · · ·+ a1nC1n.

is called cofactor expansion along the first row. Actually, you can expand
cofactors along any row or column you like!

Magical Theorem

The determinant of an n × n matrix A is

detA =
n∑

j=1

aijCij for any fixed i

detA =
n∑

i=1

aijCij for any fixed j

These formulas are called cofactor expansion along the ith row, respectively,
jth column.

In particular, you get the same answer whichever row or column you choose.

Try this with a row or a column with a lot of zeros.



Cofactor Expansion
Example

A =

 2 1 0
1 1 0
5 9 1


It looks easiest to expand along the third column:

detA = 0 · det

(
don’t
care

)
− 0 · det

(
don’t
care

)
+ 1 · det

 2 1 0
1 1 0
5 9 1


= det

(
2 1
1 1

)
= 2− 1 = 1



Poll

det


0 7 0 0 0
1 0 0 0 0
0 0 0 0 3
0 0 2 0 0
0 0 0 2 0

 = ?

A. −84 B. −28 C. −7 D. 0 E. 7 F. 28 G. 84

Poll

Repeatedly expanding along the first column repeatedly, you get:

det


0 7 0 0 0
1 0 0 0 0
0 0 0 0 3
0 0 2 0 0
0 0 0 2 0

 = − 1 · det

 7 0 0 0
0 0 0 3
0 2 0 0
0 0 2 0



= (−1) · 7 · det

 0 0 3
2 0 0
0 2 0

 = (−1) · 7 · 2 · det
(
0 3
2 0

)
= (−1) · 7 · 2 · 6 = −84.



A Formula for the Inverse
For fun—from §3.3

For 2× 2 matrices we had a nice formula for the inverse:

A =

(
a b
c d

)
=⇒ A−1 =

1

ad − bc

(
d −b
−c a

)
=

1

detA

(
C11 C21

C12 C22

)
.

Theorem
This last formula works for any n × n invertible matrix A:

A−1 =
1

detA


C11 C21 C31 · · · Cn1

C12 C22 C32 · · · Cn2

C13 C23 C33 · · · Cn3

...
...

...
. . .

...
C1n C2n C3n · · · Cnn

 =
1

detA

(
Cij

)T

Note that the cofactors are “transposed”: the (i , j) entry of the matrix is Cji .

(3, 1) entry

The proof uses Cramer’s rule.



A Formula for the Inverse
Example

Compute A−1, where A =

 1 0 1
0 1 1
1 1 0

.

The minors are:

A11 =

(
1 1
1 0

)
A12 =

(
0 1
1 0

)
A13 =

(
0 1
1 1

)
A21 =

(
0 1
1 0

)
A22 =

(
1 1
1 0

)
A23 =

(
1 0
1 1

)
A31 =

(
0 1
1 1

)
A32 =

(
1 1
0 1

)
A33 =

(
1 0
0 1

)
The cofactors are (don’t forget to multiply by (−1)i+j):

C11 = −1 C12 = 1 C13 = −1

C21 = 1 C22 = −1 C23 = −1

C31 = −1 C32 = −1 C33 = 1

The determinant is (expanding along the first row):

detA = 1 · C11 + 0 · C12 + 1 · C13 = −2



A Formula for the Inverse
Example, continued

Compute A−1, where A =

 1 0 1
0 1 1
1 1 0

.

The inverse is

A−1 =
1

detA

C11 C21 C31

C12 C22 C32

C13 C23 C33

 = −1

2

−1 1 −1
1 −1 −1
−1 −1 1

 .

Check:  1 0 1
0 1 1
1 1 0

 · −1

2

−1 1 −1
1 −1 −1
−1 −1 1

 =

 1 0 0
0 1 0
0 0 1

 . "



Summary

We have several ways to compute the determinant of a matrix.

I Special formulas for 2× 2 and 3× 3 matrices.

These work great for small matrices.

I Cofactor expansion.

This is perfect when there is a row or column with a lot of zeros.

I Row reduction.

This is the way to go when you have a big matrix which doesn’t have a
row or column with a lot of zeros.

I Any combination of the above.

Cofactor expansion is recursive, but you don’t have to use cofactor
expansion to compute the determinants of the minors!


