Algebra Comprehensive Exam
Fall 2017

Student Number:

Instructions: Complete 5 of the 8 problems, and circle their numbers below — the uncircled
problems will not be graded.

Write only on the front side of the solution pages. A complete solution of a problem
is preferable to partial progress on several problems.
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1. Let z and y be two elements of order 2 in a finite group G. Prove that (z,y) is either
abelian or is isomorphic to a dihedral group.

2. Find a factorization of
f =6z —42® + 242% — 42 — 8

into prime elements of Z[z].

3. Let A and B be finitely generated abelian groups such that A x A = B x B. Prove that
A B.

4. Find all primitive elements in the field extension Q(v/2,v/3)/Q. Justify your answer.

5. Let V' be an n-dimensional real vector space with a non-degenerate quadratic form gq.
Prove that there exists a nonzero vector v € V such that ¢(v) = 0 if and only if ¢ can
be written as xiz2 + Z?j:3 a;jx;x; for some choice of basis.

6. Let p be a prime number, and let G be any p-subgroup of GL,(F,) for some n > 1.
Prove that there is a nonzero vector v € FJ such that gv = v for all g € G, with respect
to the natural action of GL,(F,) on FJ.

7. Let R = Q[z,y]. Is R an Euclidean domain? Is R a unique factorization domain?

8. Show that f(z) = 2® — 3x — 1 is an irreducible element of Z[z]. Compute the Galois
group of the splitting field of f over Q and over R.
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