Algebra Comprehensive Exam Fall 2017

Student Number:		
-----------------	--	--

Instructions: Complete 5 of the 8 problems, and **circle** their numbers below – the uncircled problems will **not** be graded.

 $1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8$

Write **only on the front side** of the solution pages. A **complete solution** of a problem is preferable to partial progress on several problems.

- 1. Let x and y be two elements of order 2 in a finite group G. Prove that $\langle x, y \rangle$ is either abelian or is isomorphic to a dihedral group.
- 2. Find a factorization of

$$f = 6x^4 - 4x^3 + 24x^2 - 4x - 8$$

into prime elements of $\mathbf{Z}[x]$.

- 3. Let A and B be finitely generated abelian groups such that $A \times A \cong B \times B$. Prove that $A \cong B$.
- 4. Find all primitive elements in the field extension $\mathbf{Q}(\sqrt{2},\sqrt{3})/\mathbf{Q}$. Justify your answer.
- 5. Let V be an n-dimensional real vector space with a non-degenerate quadratic form q. Prove that there exists a nonzero vector $v \in V$ such that q(v) = 0 if and only if q can be written as $x_1x_2 + \sum_{i,j=3}^n a_{ij}x_ix_j$ for some choice of basis.
- 6. Let p be a prime number, and let G be any p-subgroup of $\operatorname{GL}_n(\mathbf{F}_p)$ for some $n \geq 1$. Prove that there is a nonzero vector $v \in \mathbf{F}_p^n$ such that gv = v for all $g \in G$, with respect to the natural action of $\operatorname{GL}_n(\mathbf{F}_p)$ on \mathbf{F}_p^n .
- 7. Let $R = \mathbf{Q}[x, y]$. Is R an Euclidean domain? Is R a unique factorization domain?
- 8. Show that $f(x) = x^3 3x 1$ is an irreducible element of $\mathbf{Z}[x]$. Compute the Galois group of the splitting field of f over \mathbf{Q} and over \mathbf{R} .