

Topology Comprehensive Exam

Spring 2026

Student Number:

Instructions: Complete 5 of the 8 problems, and **circle** their numbers below – the uncircled problems will **not** be graded.

1 2 3 4 5 6 7 8

Write **only on the front side** of the solution pages. A **complete solution** of a problem is preferable to partial progress on several problems.

1. Let M and N be compact manifolds without boundary of dimension $k > 0$ and $n - k > 0$, respectively. For any point $x \in N$ let $i_x : M \rightarrow M \times N$ be the map $i_x(p) = (p, x)$.
 - (a) Show that i_x is not homotopic to a constant map. Hint: use intersection numbers.
 - (b) Show that any smooth map from M into S^n is homotopic to a constant map. (Hence S^n is not a non-trivial product.)
2. Let F_n be a nontrivial free group with n generators. Prove that every index k subgroup of F_n is a free group of rank $1 + k(n - 1)$. Hint: Use a familiar space X whose fundamental group is F_n .
3. In \mathbf{R}^3 with Euclidean coordinates, consider the differential 1-form $\alpha = \cos y \, dz - \sin y \, dx$ and the vector field $v = \cos y \frac{\partial}{\partial z} - \sin y \frac{\partial}{\partial x}$. Prove that α is invariant under the flow of v .
4. Let M be a compact n -manifold without boundary. Let $f : M \rightarrow \mathbf{R}^n$ be a smooth map. Show that for every point $x \in M$ outside a measure zero subset, the preimage $f^{-1}(x)$ consists of an even number of points. Hint: If you can replace \mathbf{R}^n with a compact manifold, you can use degree theory.
5. Suppose that M is an orientable n -manifold and ω is an $n - 1$ -form on M . If the integral of ω over every $(n - 1)$ -dimensional submanifold of M is zero, show that $d\omega = 0$.
6. Recall that the cone over a space X is the quotient $CX = (X \times [0, 1]) / (X \times \{0\})$. If the cone over S^n is homeomorphic to the cone over X , show that X is either contractible or homotopy equivalent to S^n .
7. Let X be a CW complex obtained by attaching a 2-cell to $S^1 \times \mathbf{R}P^2$. Show that $\pi_1(X)$ is not a finite group of odd order.
8. Let M be the open Möbius band, that is, the total space of a nontrivial real line bundle over the circle. Show that $M \times M$ is not diffeomorphic to $S^1 \times S^1 \times \mathbb{R}^2$.

