Probability Comprehensive Exam
Spring 2026

Student Number:

Instructions: Complete 5 of the 8 problems, and circle their numbers below — the uncircled
problems will not be graded.

Write only on the front side of the solution pages. A complete solution of a problem
is preferable to partial progress on several problems.
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1. Fix a probability space (£, F,P), and let II C F be a m-system. Suppose that A € F is
independent of II in the sense that P(AN B) = P(A)P(B) for all B € II. Show that, if
A € o(IT), then P(A) is either zero or one.

2. Ifa € Rand b > 0, we write L, for the lattice L, = {...,a—2b,a—b,a,a+b,a+2b,...}.
We say that a random variable X is distributed on a lattice if there exist a,b such that
P(X € L,p) = 1. Show that X is distributed on a lattice if and only if its characteristic
function ¢x satisfies |@px(t.)| = 1 for some ¢, # 0.

3. Let X and Y be independent random variables defined on the same probability space.
Show that, if X and Y are independent and nonnegative, then we have a backwards
triangle inequality in the sense that || X 4+ Y||oc > [| X loc + [|Y]cc-

4. Let X be a nonnegative random variable with Var(X) < 1/2. Show that
P(—1+E[X] < X < 2E[X]) > 1/2.

You may wish to consider casework based on the value of E[X].

5. Let (X,)n>1 be a sequence of independent and identically distributed (i.i.d.) random
variables defined on the probability space (€2, F,P). Assume further that X; has a
density f which is continuous, bounded, even and such that f(0) > 0.

(i) For each n > 1, let
1~ 1
Y, =— —.
2%
Show that the sequence (Y;,),>1 converges in law. Can you identify the limiting law?

(ii) Show that the inverse of a standard Cauchy random variable has also a standard
Cauchy law, and then obtain the limiting law for convergence in distribution of the
empirical harmonic mean

Hint: Recall that a (standard) Cauchy random variable has density given by ﬁ, x €

(1422
Y. 1 h 0 cosu—1 dy = =T
R. You may also use that fo e2r—du=—-7.
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6. Let (X,,)n>1 be a sequence of identically distributed (not necessarily independent) ran-
dom variables defined on the probability space (2, F,P), all taking valuesin {0,1,2,3, ... }.
Let R, = {X1, Xo, ..., X,}| be the cardinality of the (random) set { Xy, Xs,..., X, }.

(i) Show that for any N € {0,1,2,...}, ER, < N 4+ nP(X; > N), and deduce the
existence and value of lim,,_,., ER,, /n.

(i) Now assume that X; has finite expectation. Show that lim,_, . ER,//n = 0.

7. (i) Let Z be a standard normal random variable. Show that, for all x > 0, we have
P(Z >z)<1/x.

(i) Recall that the Kolmogorov distance dx between the probability laws puy and py of
the random variables X and Y is given by

dic (px, pry) = Sup |Fx(z) — Fy(z)],
e

where Fx(z) = px((—o0,z]) and Fy(x) = uy((—oo,z]). Let now 7; be a centered

Gaussian measure of variance t2, and let z be absolutely continuous with density bounded
by C'. Show that

drc (v % 1, p) < 2V C.

(Hint: Start by using part (i) to show that, for any z € Rand h > 0, F,,,.(v) — F,(z) <
Ch+t/h.)

8. Let X, Xs,..., be independent random variables where each X,,, n > 1, has law
1 1
]PXn - 5 1 - 2_n (571 + 51) + 2n+1 (67271 + 52n)

(i) Does >72 Y2k converge?

(ii) Does (X, )n>1 satisfy the strong law of large numbers?
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