Analysis Comprehensive Exam
Spring 2026

Student Number:

Instructions: Complete 5 of the 8 problems, and circle their numbers below — the uncircled
problems will not be graded.

Write only on the front side of the solution pages. A complete solution of a problem
is preferable to partial progress on several problems.

NOTE:
e All scalars in this exam are real unless explicitly stated otherwise.
e All functions in this exam are (extended) real-valued unless explicitly stated otherwise.

e The exterior Lebesgue measure of £ C R" is denoted by |E|., and if E is measurable
then its Lebesgue measure is | E].

e For 1 < p < oo, and a measurable function f on a measurable set E, set [|f[|) =

[l
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1. Let {f;}52, be a sequence of nonnegative Lebesgue measurable functions such that

/fj dq:<—2, i=1,2,3,...

Define

Prove that g,(z) — 0 for almost every z € [0, 1].

:/xf(t)dt, x € [0,1].

Prove that there exists a sequence of continuously differentiable functions F), on [0, 1]
such that

2. Let f € L'(]0,1]), and define

sup |F,(z) — F(z)] — 0 as n — 0.
z€(0,1]

3. Let 1 < p < 0. For each n € N, define a linear operator
T, : LP(0,1) — L*(0,1)
by

ﬂJ@)—n/%ﬂﬂﬁ

where f is extended by zero outside (0, 1).

Prove that

sup ||Tn||LP—>LP = 1.
neN

4. Let f, € L3([0,1]) satisfy:
e f.(z) = f(x) almost everywhere on |0, 1],
® sSup anHL3([0,1]) S 1.

(a) Show that for every measurable set E' C [0, 1] and every n,

[ lhuto) = )i de < ale”

(b) Deduce that
1 fn = fllz2qoay — 0.
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5. Let ¢ : Z — (0,00), that is, ¢ is a positive function defined on the integers. Assume also
that

D Ko (k) < o
k=1

Let A C R? be the set of all (r,y) € R? such that for infinitely many k > 1, there exist
a pair of rational numbers (%, %) with

(z,y) — (% é)

6. Let E be a set in R" with 0 < |E|, < oo, where the subscript e denotes exterior (or
outer) Lebesgue measure. Let 0 < § < 1. Show that there is a set Fy C E with

< ¢ (k). (1)

Show that |A| = 0.

’Ee‘e = 9 ’Ele '
7. Let E be a Lebesgue measurable set in R” with |E| < co. Let fi : E — R be measurable
for k > 1. Assume for each x € F, there exists My < oo such that
sup | fi, (x)] exp (= [x/*) < M.
k>1
Let € > 0. Show there is a finite number M and a closed set F' C E with |E\F| < ¢ and

| fir (x)| exp (— |x\2) < M forall k>1and x € F.

8. Let (5, %, v) be a measure space. Assume that

U
n=1

where the {E,} 7, are disjoint measurable sets, each with v (E,) < co. Define 1 on S
by

[e.e]

u(B) = Zl ni/z - (f(gf)?n) B E 2.

(a) Show p is a finite measure on S.
(b) Show u is absolutely continuous on S w.r.t. v and v is absolutely continuous on S
w.r.t. .

(c) Find a function f:S — R such that for all A € ¥,

u(A)z/Afdu.
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