Algebra Comprehensive Exam
Spring 2026

Student Number:

Instructions: Complete 5 of the 8 problems, and circle their numbers below — the uncircled
problems will not be graded.

Write only on the front side of the solution pages. A complete solution of a problem
is preferable to partial progress on several problems.
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1. How many groups of order 1225 = 25 - 49 are there up to isomorphism? [Hint: First
show that any such group must be abelian. ]

2. Let G be the group of all invertible upper-triangular 2 x 2 real matrices (with group law
matrix multiplication). Let H be the subset of G consisting of all elements of the form
g% with g € G. Show that H is a subgroup of G and compute its index, i.e., the number
of (left) cosets of H in G.

3. Let m > 2 be an integer. Show that the polynomial
fX,Y)=X"+Y"+1

is irreducible in C[X,Y]. [Hint: Eisenstein’s criterion holds in any UFD, for example
ClY]]

4. Two polynomials f,g € R[t] with coefficients in a commutative ring R with identity
are called relatively prime over R if the ideal of R[t] generated by f and g contains 1.
Suppose that f, g € Z[t] are non-constant monic polynomials which are relatively prime
over Q, and that the reductions of f and g modulo p are relatively prime over Z/pZ for
all prime numbers p. Prove that f and g are relatively prime over Z.

5. Let L/Q be an algebraic extension. Suppose that for all a € L, the extension Q(a)/Q
has degree at most 2. Show that [L : Q] < 2.

6. Let F' be a finite field with cardinality q. For how many a € F does the polynomial

2° — a have a root in F'? Express your answer in terms of q.

7. 1. Suppose n is a positive integer and that A is an n x n matrix with real entries such
that A? = —I. Prove that n is even and that det(A4) = 1.

2. Show that for every even positive integer n, there exists an n x n square matrix A
with real entries such that A?2 = —I, where I denotes the n x n identity matrix.

8. Let R = Q[xz]/(z5).

1. Show that R is a free Q-module of rank 5

2. Show that R is a torsion module as a Q[z]-module.
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