Probability Comprehensive Exam
Spring 2025

Student Number:

Instructions: Complete 5 of the 8 problems, and circle their numbers below — the uncircled
problems will not be graded.

Write only on the front side of the solution pages. A complete solution of a problem
is preferable to partial progress on several problems.
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1. Let Ay, Ay, ... be independent events with P(A,) = 1/n for all n > 1. Define a sequence
of random variables (N,,),>1 by

No(w) = #{k=2",...,2"" —1:w e A}

Prove that
lim inf P(V,, > 1000) > 0.

n—oo

2. On a probability space (€2, F,P), let (4,,),>1 be a sequence of events such that > P(4,) =

+00 and
Zn—l Zn—l ]P(Ai N Aj)
lim inf e = ¢ < +00.
n—+00 ( (Zi:1 P(A;))?

Show that P(A, i.0.) > 1/c > 0.

Hint : One way to prove the result is to use the Paley-Zygmund inequality which asserts
that if X > 0 is a non-degenerate random variable with 0 < E(X?) < +oco and if
0 < A<1,then P(X > AEX) > (1 — N)*(EX)?/E(X?).

3. Let X and Y be random variables such that E|X| < co and E|Y| < co. Prove that

/OO[P(X<xSY)—IP’(Y<x§X)] dr = EY — EX.

o0

4. Let (X,)n>1 be a sequence of Gaussian random variables that converge in L? to some
random variable X. Prove that X is either (a) almost surely equal to a constant or (b)
a Gaussian random variable.

5. Let (X,,)n>1 be a sequence of i.i.d. standard Gaussian random variables and define
T=min{n>1:X;+---+ X, <nlogn}.

Prove that Ee®? < oo for every o > 0.

6. Let (X,)n>1 be a sequence of independent random variables with finite first moment and
such that EX,, = 0, for all n > 1. Show that > > X? converges almost surely if and

only if
+oo
X
S E (1+X5) < +oo.

n=1
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7. Let (X,)n>1 be a sequence of independent random variables such that P(X, = 1) =
1/n and P(X,, = 0) = 1 — 1/n. Show that properly centered and normalized, S, =
> p—y X converges in distribution towards a non-degenerate random variable that you
will identify.

8. Let (X,)n>1 be a sequence of iid random variables with finite second moment. Let
EX; =0, let EX? =02, 0 < 0 < 400 and let S, = >_p_, Xi. Show that

ESF  [20?

lim E[ S| =2 lim
n—-+o0o \/ﬁ o n——+o0 \/ﬁ T’

where as usual S;" = max(5,,0).
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