Differential Equations Comprehensive Exam Spring 2025

Student Number:

Instructions: Complete 5 of the 8 problems, and **circle** their numbers below – the uncircled problems will **not** be graded.

 $1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8$

Write **only on the front side** of the solution pages. A **complete solution** of a problem is preferable to partial progress on several problems.

1. Consider the initial value problem

$$\begin{cases} \dot{x} = x^2 \sin(t) \\ x(0) = x_0 \end{cases}$$

on **R** and let $x(t) : [0, T(x_0)) \to \mathbf{R}$ denote its maximal solution in forward-time, $T(x_0) \in (0, \infty]$. Find $T(x_0)$ for all $x_0 \in \mathbf{R}$.

2. Consider the ODE

$$\begin{cases} \dot{x} = ax - y + xy^2 \\ \dot{y} = x + ay + y^3 \end{cases}$$

Show that if a > 0, then there are no nontrivial periodic orbits.

Hint: Let $r = \sqrt{x^2 + y^2}$ and estimate $\frac{d}{dt}(\log r)$ from below.

- 3. Consider a planar ODE $\dot{x} = F(x)$ with smooth vector field $F : \mathbf{R}^2 \to \mathbf{R}$. Assume F(0) = 0, and suppose V is a Lyapunov function for F at 0, i.e., there is a smooth function $V : \mathbf{R}^d \to [0, \infty)$ and a radius r > 0 such that
 - (a) V > 0 on $U \setminus \{0\}$; and
 - (b) $\dot{V} \leq 0$ on U.

Here $U = B_r(0)$ is the ball of radius r centered at 0.

Assume $\{x \in U : \dot{V} = 0\} \subset \Sigma$, where Σ is a closed, smooth curve containing the origin, and assume moreover that $\Sigma \setminus \{0\}$ is transversal to F. Prove that 0 is asymptotically stable.

4. Consider the 2π -periodic linear ODE

$$\dot{x} = A(t)x = \begin{pmatrix} \sin^2 t + 1 & e^{\sin t} \\ e^{\cos t} & \cos^2 t \end{pmatrix} x.$$

Show that this ODE admits a solution x(t) for which

$$\lim_{t \to \infty} \frac{1}{t} \log |x(t)| \ge 1 \,.$$

5. Fix a bounded subset Ω of \mathbb{R}^n with smooth boundary $\partial\Omega$, and for $T \geq 1$ write $\Omega_T = \Omega \times (0,T]$ with boundary $\Gamma_T = (\Omega \times \{t=0\}) \cup (\partial\Omega \times [0,T])$. Assume u(x,t) has continuous 2nd order derivatives in $x \in \overline{\Omega}$ and continuous first order derivatives in $t \in [0,T]$, and that u(x,t) is the solution of

$$\begin{cases} u_t - \Delta u = f(x, t), \ (x, t) \in \Omega_T, \\ u(x, t)|_{\Gamma_T} = \phi(x, t), \end{cases}$$

Spring 2025

,

where f and ϕ are bounded functions on $\overline{\Omega}_T$. Define

$$F = \sup_{\overline{\Omega}_T} |f|, \quad B = \sup_{\Gamma_T} |\phi|.$$

Prove that

$$\max_{\bar{\Omega}_T} u \le FT + B.$$

6. Assume $u \in C^2([0,1] \times [0,\infty))$ is a classical solution to the following problem:

$$\begin{cases} u_{tt} - u_{xx} + u_t = -\frac{1}{4}u, \ x \in (0,1), \ t > 0, \\ u(0,t) = u(1,t) = 0, \ t > 0 \\ u(x,0) = g(x), \ u_t(x,0) = h(x), \ for \ x \in (0,1), \end{cases}$$

where g, h are C^2 functions such that

$$g(0) = g(1) = h(0) = h(1) = 0$$

Prove that there exists a constant C such that

$$||u(\cdot,t)||_{L^2_x([0,1])} \le Ce^{-\frac{1}{2}t}.$$

7. Identify the types of the following equation

$$x^2 u_{xx} + 2xy u_{xy} + y^2 u_{yy} = 0,$$

and then transfer it into standard form.

8. For the following problem

$$u_t + u^3 u_x = 0, \ x \in \mathbf{R}, t > 0,$$

 $u(x, 0) = \frac{1}{1 + x^2},$

Find the time when the C^1 solution u(x,t) blows up first. Hint: Look for a blowup in $||u_x(x,t)||_{L^{\infty}}$.

{