Topology Comprehensive Exam Spring 2025

Student Number:	
-----------------	--

Instructions: Complete 5 of the 8 problems, and **circle** their numbers below – the uncircled problems will **not** be graded.

 $1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8$

Write **only on the front side** of the solution pages. A **complete solution** of a problem is preferable to partial progress on several problems.

- 1. Let ω be an exact 2-form. Show that ω^n is exact for all n. (Here ω^n means the wedge product of ω with itself n times).
- 2. Let K be the Klein bottle. Recall that K is the surface obtained from $[-1, 1] \times [-1, 1]$ by identifying (t, 1) with (t, -1) and (1, s) with (-1, -s). Give a group presentation for the fundamental group of K. Show that the torus $T^2 = S^1 \times S^1$ is a 2-fold cover of K and compute subgroup of $\pi_1(K)$ corresponding to this cover in terms of the presentation.
- 3. Let M be a compact manifold without boundary. Show there is no submersion from M to \mathbb{R}^n for any n > 0.
- 4. Let M be a smooth, compact manifold with boundary. Show that there is no smooth map $f: M \to \partial M$ such that f(x) = x for all $x \in \partial M$.
- 5. Show that the suspension of $\mathbb{R}P^2$ is not a 3-dimensional manifold. Recall that the suspension SX of a space X is the quotient of the product $X \times [0, 1]$ obtained by collapsing the subspaces $X \times 0$ and $X \times 1$ to different points.
- 6. Let M be a 7-dimensional smooth manifold and S be an embedded 1-dimensional submanifold. Show two smooth maps $f, g: S^2 \to (M - S)$ are homotopic in M - S if and only if they are homotopic in M.
- 7. Let $S = \{(x, y, z, w) \in \mathbf{R}^4 : x^2 + y^2 + z^2 + w^4 = 1\}$ is a manifold and compute its dimension. Consider the vector field on \mathbf{R}^4 given by $v(x, y, z, w) = (2y, -2x, 4w^3, -2z)$ (here we are identifying $T_{(x,y,z,w)}\mathbf{R}^4$ with \mathbf{R}^4 in the natural way). Show that v restricted to S defines a vector field on S.
- 8. Let X_k be the quotient space of \mathbb{R}^2 by a discrete subset of consisting of k > 1 points. Show that X_3 is not homotopy equivalent to a covering space of X_2 . Show that X_2 is homotopy equivalent to a covering space of X_3 .