
Analysis Comprehensive Exam

Spring 2025

Student Number:

Instructions: Complete 5 of the 8 problems, and circle their numbers below – the uncircled
problems will not be graded.

1 2 3 4 5 6 7 8

Write only on the front side of the solution pages. A complete solution of a problem
is preferable to partial progress on several problems.

NOTE:

• All scalars in this exam are real unless explicitly stated otherwise.

• All functions in this exam are (extended) real-valued unless explicitly stated otherwise.

• The exterior Lebesgue measure of E ⊆ Rd is denoted by |E|e, and if E is measurable
then its Lebesgue measure is |E|.

• The characteristic function of a set A is denoted by χA.

• The L1-norm of a measurable function f on a measurable set E is ∥f∥1 =
∫
E

|f(x)| dx.
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1. Fix 1 ≤ p, q ≤ ∞. Let A = [aij]i,j∈N be an infinite matrix and for each i ∈ N define
ai = (aij)j∈N. Suppose that:

(a) The series (Ax)i =
∑

j aijxj converges for each vector x ∈ ℓp and index i ∈ N, and

(b) Ax =
(
(Ax)i

)
i∈N ∈ ℓq for each x ∈ ℓp.

Identifying the matrix A with the map x 7→ Ax, prove that A is a bounded mapping
from ℓp to ℓq.
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2. Let χt = χ(t,∞) be the characteristic function of the interval (t,∞). Prove that if f and

g are measurable functions on R, then ∥f − g∥1 =
∫ ∞

−∞
∥χt ◦ f − χt ◦ g∥1 dt.
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3. Let {fn}n∈N be a sequence of measurable functions on R, and let f be a measurable
function on R. Suppose that:

(a) fn(x) → f(x) for almost every x ∈ R,

(b)

∫ ∞

−∞
|xfn(x)| dx ≤ 100 for every n ∈ N, and

(c)

∫ ∞

−∞
|fn(x)|2 dx ≤ 100 for every n ∈ N.

Prove that fn ∈ L1(R) for every n, f ∈ L1(R), and ∥f − fn∥1 → 0 as n → ∞.
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4. Suppose A ⊂ R is a Lebesgue null set, that is, |A|e = 0. Suppose f : R → R2 satisfies
|f(x)− f(y)| ≤

√
|x− y| for x, y ∈ R. Prove that f(A) is a Lebesgue null set in R2.
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5. (5 points each part) Let (X,A, µ) be a finite measure space. Let Ek be any measurable
subsets of X such that µ(Ek) → 0 as k → ∞. For every x ∈ X,N ∈ N, put

FN(x) =
1

N
|{n ∈ {1, 2, . . . , N} : x ∈ En}|

where |S| denotes the cardinality of the set S.

(a) Show that FN converges to 0 in measure.

(b) Is it necessarily true that limN→∞ FN(x) = 0 µ-almost everywhere? (Either provide
a proof or a counterexample.)
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6. Suppose f ∈ L2((0,∞)). Prove that the function

G(t) =

∫ ∞

0

f(x) sin(tx2)

1 + tx
dx

is continuous on (0,∞).
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7. Let E be a measurable subset of R of finite Lebesgue measure. Let f(x) be any con-
tinuous 1-periodic function on the line. Show that

∫
E
f(tx) dx tends to |E|

∫
[0,1]

f dx as
t → ∞.
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8. A measurable function f : [0, 1] → [1,∞] satisfies |{f > y}| ≤ y−2 for all y > 0. What
is the largest possible value of

∫
[0,1]

f(x) dx?

(This means prove an upper bound (7 points) and show by means of an example that it
is sharp (3 points).)
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