Analysis Comprehensive Exam Spring 2025

Student Number:

Instructions: Complete 5 of the 8 problems, and **circle** their numbers below – the uncircled problems will **not** be graded.

 $1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8$

Write **only on the front side** of the solution pages. A **complete solution** of a problem is preferable to partial progress on several problems.

NOTE:

- All scalars in this exam are real unless explicitly stated otherwise.
- All functions in this exam are (extended) real-valued unless explicitly stated otherwise.
- The exterior Lebesgue measure of $E \subseteq \mathbf{R}^d$ is denoted by $|E|_e$, and if E is measurable then its Lebesgue measure is |E|.
- The characteristic function of a set A is denoted by χ_A .
- The L¹-norm of a measurable function f on a measurable set E is $||f||_1 = \int_E |f(x)| dx$.

- 1. Fix $1 \leq p, q \leq \infty$. Let $A = [a_{ij}]_{i,j \in \mathbb{N}}$ be an infinite matrix and for each $i \in \mathbb{N}$ define $a_i = (a_{ij})_{j \in \mathbb{N}}$. Suppose that:
 - (a) The series $(Ax)_i = \sum_j a_{ij} x_j$ converges for each vector $x \in \ell^p$ and index $i \in \mathbf{N}$, and
 - (b) $Ax = ((Ax)_i)_{i \in \mathbf{N}} \in \ell^q$ for each $x \in \ell^p$.

Identifying the matrix A with the map $x \mapsto Ax$, prove that A is a bounded mapping from ℓ^p to ℓ^q .

2. Let $\chi_t = \chi_{(t,\infty)}$ be the characteristic function of the interval (t,∞) . Prove that if f and g are measurable functions on \mathbf{R} , then $||f - g||_1 = \int_{-\infty}^{\infty} ||\chi_t \circ f - \chi_t \circ g||_1 dt$.

- 3. Let $\{f_n\}_{n \in \mathbb{N}}$ be a sequence of measurable functions on \mathbb{R} , and let f be a measurable function on \mathbb{R} . Suppose that:
 - (a) $f_n(x) \to f(x)$ for almost every $x \in \mathbf{R}$,
 - (b) $\int_{-\infty}^{\infty} |xf_n(x)| dx \le 100$ for every $n \in \mathbf{N}$, and (c) $\int_{-\infty}^{\infty} |f_n(x)|^2 dx \le 100$ for every $n \in \mathbf{N}$.

Prove that $f_n \in L^1(\mathbf{R})$ for every $n, f \in L^1(\mathbf{R})$, and $||f - f_n||_1 \to 0$ as $n \to \infty$.

4. Suppose $A \subset \mathbb{R}$ is a Lebesgue null set, that is, $|A|_e = 0$. Suppose $f : \mathbb{R} \to \mathbb{R}^2$ satisfies $|f(x) - f(y)| \leq \sqrt{|x - y|}$ for $x, y \in \mathbb{R}$. Prove that f(A) is a Lebesgue null set in \mathbb{R}^2 .

5. (5 points each part) Let (X, A, μ) be a finite measure space. Let E_k be any measurable subsets of X such that $\mu(E_k) \to 0$ as $k \to \infty$. For every $x \in X, N \in \mathbb{N}$, put

$$F_N(x) = \frac{1}{N} |\{n \in \{1, 2, \dots, N\} : x \in E_n\}|$$

where |S| denotes the cardinality of the set S.

(a) Show that F_N converges to 0 in measure.

(b) Is it necessarily true that $\lim_{N\to\infty} F_N(x) = 0$ µ-almost everywhere? (Either provide a proof or a counterexample.)

6. Suppose $f \in L^2((0,\infty))$. Prove that the function

$$G(t) = \int_0^\infty \frac{f(x)\sin(tx^2)}{1+tx} dx$$

is continuous on $(0,\infty)$.

7. Let *E* be a measurable subset of \mathbb{R} of finite Lebesgue measure. Let f(x) be any continuous 1-periodic function on the line. Show that $\int_E f(tx) dx$ tends to $|E| \int_{[0,1]} f dx$ as $t \to \infty$.

8. A measurable function $f: [0,1] \to [1,\infty]$ satisfies $|\{f > y\}| \le y^{-2}$ for all y > 0. What is the largest possible value of $\int_{[0,1]} f(x) dx$?

(This means prove an upper bound (7 points) and show by means of an example that it is sharp (3 points).)