Probability Comprehensive Exam Spring 2024

Student Number: \square

Instructions: Complete 5 of the 8 problems, and circle their numbers below - the uncircled problems will not be graded.

$$
\begin{array}{llllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8
\end{array}
$$

Write only on the front side of the solution pages. A complete solution of a problem is preferable to partial progress on several problems.

1. Let $X=\left(X_{1}, \ldots, X_{4}\right)$ be a mean zero normal random vector in \mathbb{R}^{4} with covariance matrix $\Sigma=\left(\sigma_{i j}: 1 \leq i, j \leq 4\right)$. Show that

$$
\mathbb{E} X_{1} X_{2} X_{3} X_{4}=\sigma_{12} \sigma_{34}+\sigma_{13} \sigma_{24}+\sigma_{14} \sigma_{23}
$$

2. Let $X_{1}, \ldots, X_{n}, \ldots$ be i.i.d. exponential random variables with expectation 1 and let $Y_{1}, \ldots, Y_{n}, \ldots$ be i.i.d. standard normal random variables. Show that

$$
\max \left(X_{1}, \ldots, X_{n}\right)-\max \left(Y_{1}, \ldots, Y_{n}\right) \rightarrow \infty \text { as } n \rightarrow \infty \text { a.s. }
$$

3. Suppose $X_{0}=0$ and

$$
X_{n}=a X_{n-1}+\xi_{n}, n \geq 1,
$$

where $a \in \mathbb{R}$ and ξ_{1}, ξ_{2}, \ldots are independent mean zero random variables. Let $\mathcal{F}_{n}:=$ $\sigma\left(X_{1}, \ldots, X_{n}\right)$ be the σ-field generated by X_{1}, \ldots, X_{n}. Show that

$$
\mathbb{E}\left(X_{n+1} \mid \mathcal{F}_{n}\right)=a X_{n} .
$$

4. Let $f:[0,1] \mapsto \mathbb{R}$ be a twice continuously differentiable function. Show that

$$
\lim _{n \rightarrow \infty} n \int_{0}^{1} \cdots \int_{0}^{1}\left[f\left(\frac{x_{1}+\ldots x_{n}}{n}\right)-f(1 / 2)\right] d x_{1} \ldots d x_{n}=\frac{f^{\prime \prime}(1 / 2)}{24}
$$

5. (i) Let X be a non-zero random variable and let $b_{1}, b_{2} \in(0,+\infty)$ be such that $b_{1} X \stackrel{d}{=} b_{2} X$ where d indicates equality in distribution. Show that $b_{1}=b_{2}$.
(ii) Let X be a non-constant random variable and let $b_{1}, b_{2} \in(0,+\infty)$ and $c_{1}, c_{2} \in \mathbb{R}$ be such that $b_{1} X+c_{1} \stackrel{d}{=} b_{2} X+c_{2}$ where again d indicates equality in distribution. Show that $b_{1}=b_{2}$ and $c_{1}=c_{2}$.
6. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and let \mathcal{G} be a sub- σ-field of \mathcal{F}. Two random variables X et Y are said to be independent conditionally to \mathcal{G} if for any non-negative measurable functions, f and g, one has:

$$
\begin{equation*}
\mathbb{E}[f(X) g(Y) \mid \mathcal{G}]=\mathbb{E}[f(X) \mid \mathcal{G}] \mathbb{E}[g(Y) \mid \mathcal{G}] \tag{1}
\end{equation*}
$$

(i) What is the meaning of $\left(C_{1}\right)$ if $\mathcal{G}=\{\emptyset, \Omega\}$? And if $\mathcal{G}=\mathcal{F}$?
(ii) Show that the definition $\left(C_{1}\right)$ is equivalent to the fact that for any non-negative random variable Z which is \mathcal{G}-mesurable, and for any non-negative measurable functions f and g one has

$$
\begin{equation*}
\mathbb{E}[f(X) g(Y) Z]=\mathbb{E}[f(X) Z \mathbb{E}[g(Y) \mid \mathcal{G}]] \tag{2}
\end{equation*}
$$

7. Let D be a domain of \mathbb{R}^{d} and let f be a measurable real-valued function defined on \mathbb{R}^{d} such that $\mathbf{1}_{D} f$ is Lebesgue integrable. Let $\left(U_{n}\right)_{n \geq 1}$ be a sequence of iid (independent and identically distributed) random variables uniformly distributed on $(0,1)$. Then, for each $n=1,2,3, \ldots$, let \mathbf{V}_{n} be the random vector defined by $\mathbf{V}_{n}=\left(U_{n d+1}, U_{n d+2}, \ldots, U_{(n+1) d}\right)$, and let X_{n} be the random variable defined by $X_{n}=\left(\mathbf{1}_{D} f\right)\left(\mathbf{V}_{n}\right)$.
(i) Show that the sequence $\left(S_{n}\right)_{n \geq 1}$ given by $S_{n}=\sum_{k=1}^{n} X_{k} / n$ converges almost surely towards a limit L that you will identify.
(ii) Let now f be bounded by $M>0$, show that for any $\lambda>0$,

$$
\mathbb{P}\left(\left|S_{n}-L\right| \geq \lambda\right) \leq \frac{M^{2}}{n \lambda^{2}}
$$

8. Let $\left(a_{n}\right)_{n \geq 1}$ and $\left(b_{n}\right)_{n \geq 1}$ be two sequences of reals such that $\lim _{n \rightarrow+\infty} a_{n}=a$ and $\lim _{n \rightarrow+\infty} b_{n}=b$, with $a<b$. Let $\left(X_{n}\right)_{n \geq 1}$ be a sequence of random variables converging in distribution to a random variable X_{∞} having a continuous distribution function F_{∞}. Prove that

$$
\lim _{n \rightarrow+\infty} \mathbb{P}\left(X_{n} \in\left[a_{n}, b_{n}\right]\right)=\mathbb{P}\left(X_{\infty} \in[a, b]\right)
$$

