Probability Comprehensive Exam
Spring 2024

Student Number:

Instructions: Complete 5 of the 8 problems, and circle their numbers below — the uncircled
problems will not be graded.

Write only on the front side of the solution pages. A complete solution of a problem
is preferable to partial progress on several problems.
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1. Let X = (Xi,...,X,) be a mean zero normal random vector in R* with covariance
matrix ¥ = (0y; : 1 <14,j <4). Show that

EX1 X0 X3Xy = 012034 + 013024 + 014023.

2. Let Xy,...,X,,... beiid. exponential random variables with expectation 1 and let
Yi,...,Y,, ... beiid. standard normal random variables. Show that
max(Xy,...,X,) —max(Yy,...,Y,) = 00 as n — oo a.s.

3. Suppose Xy =0 and
Xp=aX, 1+&,n>1,
where a € R and &,&,,... are independent mean zero random variables. Let F, :=

o(Xi,...,X,) be the o-field generated by Xi,...,X,. Show that
E(Xn+1|fn) = aXn.

4. Let f:]0,1] = R be a twice continuously differentiable function. Show that

[ [ ) - oo an, = T

5. (i) Let X be a non-zero random variable and let by, by € (0, 400) be such that b; X < by X
where d indicates equality in distribution. Show that b; = bs.
(ii) Let X be a non-constant random variable and let by,by € (0,+00) and ¢;,¢y € R

be such that b1 X + ¢ 4 by X + co where again d indicates equality in distribution. Show
that by = by and ¢; = .

6. Let (2, F,P) be a probability space and let G be a sub-o-field of F. Two random
variables X et Y are said to be independent conditionally to G if for any non-negative
measurable functions, f and g, one has:

E[f(X)g(Y) 9] = E[f(X) [G] El[g(Y) |G]. (1)

(i) What is the meaning of (Cy) if G = {0,Q}? And if G = F?

(ii) Show that the definition (C}) is equivalent to the fact that for any non-negative
random variable Z which is G-mesurable, and for any non-negative measurable functions
f and g one has

E[f(X)g(Y)Z] = E[f(X)ZE[g(Y)[3]]. (Cy)
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7. Let D be a domain of R? and let f be a measurable real-valued function defined on R¢
such that 1p f is Lebesgue integrable. Let (U, ),>1 be a sequence of iid (independent and
identically distributed) random variables uniformly distributed on (0, 1). Then, for each
n=1,2,3,..., let V,, be the random vector defined by V,, = (Unit1, Undt2; - - -, Unt1)a)s
and let X,, be the random variable defined by X,, = (1pf)(V,).

(i) Show that the sequence (S,),>1 given by S, = > ,_, Xj/n converges almost surely
towards a limit L that you will identify.

(ii) Let now f be bounded by M > 0, show that for any A > 0,

2

M
— L > < —.
B(|S, — LI > X) € =

8. Let (an)n>1 and (b,),>1 be two sequences of reals such that lim, , . a, = a and
lim,, o0 by, = b, with @ < b. Let (X,,),>1 be a sequence of random variables converging
in distribution to a random variable X, having a continuous distribution function F,,.
Prove that
lim P(X, € [a,,b,]) =P(X, € [a,b]).

n—-+00
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