Probability Comprehensive Exam Spring 2024

Student Number:	
-----------------	--

Instructions: Complete 5 of the 8 problems, and **circle** their numbers below – the uncircled problems will **not** be graded.

 $1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8$

Write **only on the front side** of the solution pages. A **complete solution** of a problem is preferable to partial progress on several problems.

1. Let $X = (X_1, \ldots, X_4)$ be a mean zero normal random vector in \mathbb{R}^4 with covariance matrix $\Sigma = (\sigma_{ij} : 1 \le i, j \le 4)$. Show that

$$\mathbb{E}X_1 X_2 X_3 X_4 = \sigma_{12} \sigma_{34} + \sigma_{13} \sigma_{24} + \sigma_{14} \sigma_{23}.$$

2. Let X_1, \ldots, X_n, \ldots be i.i.d. exponential random variables with expectation 1 and let Y_1, \ldots, Y_n, \ldots be i.i.d. standard normal random variables. Show that

$$\max(X_1,\ldots,X_n) - \max(Y_1,\ldots,Y_n) \to \infty \text{ as } n \to \infty \text{ a.s.}$$

3. Suppose $X_0 = 0$ and

$$X_n = aX_{n-1} + \xi_n, n \ge 1,$$

where $a \in \mathbb{R}$ and ξ_1, ξ_2, \ldots are independent mean zero random variables. Let $\mathcal{F}_n := \sigma(X_1, \ldots, X_n)$ be the σ -field generated by X_1, \ldots, X_n . Show that

$$\mathbb{E}(X_{n+1}|\mathcal{F}_n) = aX_n$$

4. Let $f:[0,1] \mapsto \mathbb{R}$ be a twice continuously differentiable function. Show that

$$\lim_{n \to \infty} n \int_0^1 \cdots \int_0^1 \left[f\left(\frac{x_1 + \dots + x_n}{n}\right) - f(1/2) \right] dx_1 \dots dx_n = \frac{f''(1/2)}{24}$$

5. (i) Let X be a non-zero random variable and let $b_1, b_2 \in (0, +\infty)$ be such that $b_1 X \stackrel{d}{=} b_2 X$ where d indicates equality in distribution. Show that $b_1 = b_2$.

(ii) Let X be a non-constant random variable and let $b_1, b_2 \in (0, +\infty)$ and $c_1, c_2 \in \mathbb{R}$ be such that $b_1X + c_1 \stackrel{d}{=} b_2X + c_2$ where again d indicates equality in distribution. Show that $b_1 = b_2$ and $c_1 = c_2$.

6. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and let \mathcal{G} be a sub- σ -field of \mathcal{F} . Two random variables X et Y are said to be independent conditionally to \mathcal{G} if for any non-negative measurable functions, f and g, one has:

$$\mathbb{E}[f(X)g(Y) | \mathcal{G}] = \mathbb{E}[f(X) | \mathcal{G}] \mathbb{E}[g(Y) | \mathcal{G}].$$
 (C₁)

(i) What is the meaning of (C_1) if $\mathcal{G} = \{\emptyset, \Omega\}$? And if $\mathcal{G} = \mathcal{F}$?

(ii) Show that the definition (C_1) is equivalent to the fact that for any non-negative random variable Z which is \mathcal{G} -mesurable, and for any non-negative measurable functions f and g one has

$$\mathbb{E}[f(X)g(Y)Z] = \mathbb{E}[f(X)Z\mathbb{E}[g(Y)|\mathcal{G}]].$$
(C₂)

7. Let D be a domain of \mathbb{R}^d and let f be a measurable real-valued function defined on \mathbb{R}^d such that $\mathbf{1}_D f$ is Lebesgue integrable. Let $(U_n)_{n\geq 1}$ be a sequence of iid (independent and identically distributed) random variables uniformly distributed on (0, 1). Then, for each n = 1, 2, 3, ..., let \mathbf{V}_n be the random vector defined by $\mathbf{V}_n = (U_{nd+1}, U_{nd+2}, \ldots, U_{(n+1)d})$, and let X_n be the random variable defined by $X_n = (\mathbf{1}_D f)(\mathbf{V}_n)$.

(i) Show that the sequence $(S_n)_{n\geq 1}$ given by $S_n = \sum_{k=1}^n X_k/n$ converges almost surely towards a limit L that you will identify.

(ii) Let now f be bounded by M > 0, show that for any $\lambda > 0$,

$$\mathbb{P}(|S_n - L| \ge \lambda) \le \frac{M^2}{n\lambda^2}.$$

8. Let $(a_n)_{n\geq 1}$ and $(b_n)_{n\geq 1}$ be two sequences of reals such that $\lim_{n\to+\infty} a_n = a$ and $\lim_{n\to+\infty} b_n = b$, with a < b. Let $(X_n)_{n\geq 1}$ be a sequence of random variables converging in distribution to a random variable X_{∞} having a continuous distribution function F_{∞} . Prove that

$$\lim_{n \to +\infty} \mathbb{P}(X_n \in [a_n, b_n]) = \mathbb{P}(X_\infty \in [a, b]).$$