Differential Equations Comprehensive Exam Spring 2024

Student	Number:	
Student	i uniber.	

Instructions: Complete 5 of the 8 problems, and **circle** their numbers below – the uncircled problems will **not** be graded.

 $1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8$

Write **only on the front side** of the solution pages. A **complete solution** of a problem is preferable to partial progress on several problems.

1. If $u(x,t) \in C^2([0,1] \times [0,\infty))$ is a classical solution to the following problem

$$\begin{cases} u_{tt} - u_{xx} + u_t = -\frac{1}{4}u, \ x \in (0, 1), \ t > 0, \\ u(0, t) = u(1, t) = 0, \ t > 0 \\ u(x, 0) = g(x), \ u_t(x, 0) = h(x), \ for \ x \in (0, 1). \end{cases}$$

for any bounded C^2 functions g(x) and h(x) such that

$$g(0) = g(1) = h(0) = h(1) = 0.$$

Prove that

$$\lim_{t \to \infty} \|u(x,t)\|_{L^2_x([0,1])} = 0,$$

at an order like $e^{-\frac{1}{2}t}$.

2. Let B be a unit ball in \mathbb{R}^n $(n \ge 2)$ centered at the origin, and u be the smooth solution of the following problem

$$\begin{cases} -\Delta u = f, \ x \in B, \\ u = g, on \ \partial B. \end{cases}$$

Prove that there exists a constant C, depending only on n, such that

$$\max_{B} |u| \leq C(\max_{\partial B} |g| + \max_{B} |f|).$$

3. For the following problem

$$\begin{cases} u_t + uu_x = 0, \ x \in \mathbf{R}, t > 0 \\ u(x, 0) = \frac{1}{1 + x^2}, \end{cases}$$

find the time and the point where the C^1 solution u(x,t) blows up first.

4. Assume that $u(x,t) \in C^{2,1}((0,\pi) \times (0,\infty))$ solves

$$\begin{array}{ccc} u_t - u_{xx} = \frac{1}{4}u, \ x \in (0,\pi), \ t > 0, \\ u(0,t) = u(\pi,t) = 0, \ t > 0, \\ u(x,0) = f(x), \ for \ x \in (0,\pi), \end{array}$$

where $f(x) \in C_0^{\infty}(0,\pi)$, that is f(x) has compact support in $(0,\pi)$. Prove that

$$\lim_{t \to \infty} \|u(x,t)\|_{L^2_x([0,\pi])} = 0.$$

5. Consider the equation

$$\dot{y}(t) = y^2 \cos t - e^t y. \tag{1}$$

Show that for every y_0 there exists $\tau(y_0) > 0$ and a solution $Y(t, y_0)$ of (1) with $Y(0, y_0) = y_0$ defined for $t \in (-\tau(y_0), \tau(y_0))$. Can you chose $\tau(y_0)$ such that $\inf_{y_0 \in \mathbb{R}} \tau(y_0) > 0$?

6. Let f(t) be defined for $t \in]1, \infty]$, continuous and such that

$$\int_1^\infty t^{n-1} |f(t)| dt < \infty$$

Show that there exists a unique solution of

$$\frac{d^n}{dt^n}y(t) + f(t)y(t) = 0$$

such that

$$\lim_{t \to \infty} y(t) = 1$$
$$\lim_{t \to \infty} y^{(i)}(t) = 0 \qquad i = 1, \dots, n-1$$

where $y^{(i)}(t) = d^{i}y(t)/dt^{i}$.

(Hint: for n = 2 we have the integral representation

$$y(t) = y(a) + y'(a)t - \int_{a}^{t} (t-s)f(s)y(s)ds.$$

Generalize this formula for any n and then iterate it.)

7. Show that the system of equation

$$\begin{cases} \dot{x} = x - y - \left(x^2 + \frac{3}{2}y^2\right)x\\ \dot{y} = x + y - \left(x^2 + \frac{1}{2}y^2\right)y\end{cases}$$

admit at least a periodic orbit.

8. Let A be a $n \times n$ constant matrix and $g : \mathbb{R} \to \mathbb{R}^n$ be continuous and periodic of period T. Consider the differential equation:

$$\dot{x}(t) = Ax(t) + g(t). \tag{2}$$

Show that if all eigenvalues of A have non 0 real part, then there exists a unique x_0 such that the solution of (2) with $x(0) = x_0$ is periodic of period T.