Differential Equations Comprehensive Exam Spring 2024

Student Number:
 \square

Instructions: Complete 5 of the 8 problems, and circle their numbers below - the uncircled problems will not be graded.

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Write only on the front side of the solution pages. A complete solution of a problem is preferable to partial progress on several problems.

1. If $u(x, t) \in C^{2}([0,1] \times[0, \infty))$ is a classical solution to the following problem

$$
\left\{\begin{array}{l}
u_{t t}-u_{x x}+u_{t}=-\frac{1}{4} u, x \in(0,1), t>0 \\
u(0, t)=u(1, t)=0, t>0 \\
u(x, 0)=g(x), u_{t}(x, 0)=h(x), \text { for } x \in(0,1)
\end{array}\right.
$$

for any bounded C^{2} functions $g(x)$ and $h(x)$ such that

$$
g(0)=g(1)=h(0)=h(1)=0
$$

Prove that

$$
\lim _{t \rightarrow \infty}\|u(x, t)\|_{L_{x}^{2}[[0,1])}=0
$$

at an order like $e^{-\frac{1}{2} t}$.
2. Let B be a unit ball in $\mathbf{R}^{n}(n \geq 2)$ centered at the origin, and u be the smooth solution of the following problem

$$
\left\{\begin{array}{l}
-\Delta u=f, x \in B \\
u=g, \text { on } \partial B
\end{array}\right.
$$

Prove that there exists a constant C, depending only on n, such that

$$
\max _{B}|u| \leq C\left(\max _{\partial B}|g|+\max _{B}|f|\right) .
$$

3. For the following problem

$$
\left\{\begin{array}{l}
u_{t}+u u_{x}=0, x \in \mathbf{R}, t>0 \\
u(x, 0)=\frac{1}{1+x^{2}}
\end{array}\right.
$$

find the time and the point where the C^{1} solution $u(x, t)$ blows up first.
4. Assume that $u(x, t) \in C^{2,1}((0, \pi) \times(0, \infty))$ solves

$$
\left\{\begin{array}{l}
u_{t}-u_{x x}=\frac{1}{4} u, x \in(0, \pi), t>0 \\
u(0, t)=u(\pi, t)=0, t>0 \\
u(x, 0)=f(x), \text { for } x \in(0, \pi)
\end{array}\right.
$$

where $f(x) \in C_{0}^{\infty}(0, \pi)$, that is $f(x)$ has compact support in $(0, \pi)$. Prove that

$$
\lim _{t \rightarrow \infty}\|u(x, t)\|_{L_{x}^{2}([0, \pi])}=0
$$

5. Consider the equation

$$
\begin{equation*}
\dot{y}(t)=y^{2} \cos t-e^{t} y . \tag{1}
\end{equation*}
$$

Show that for every y_{0} there exists $\tau\left(y_{0}\right)>0$ and a solution $Y\left(t, y_{0}\right)$ of (1) with $Y\left(0, y_{0}\right)=$ y_{0} defined for $t \in\left(-\tau\left(y_{0}\right), \tau\left(y_{0}\right)\right)$. Can you chose $\tau\left(y_{0}\right)$ such that $\inf _{y_{0} \in \mathbb{R}} \tau\left(y_{0}\right)>0$?
6. Let $f(t)$ be defined for $t \in] 1, \infty]$, continuous and such that

$$
\int_{1}^{\infty} t^{n-1}|f(t)| d t<\infty
$$

Show that there exists a unique solution of

$$
\frac{d^{n}}{d t^{n}} y(t)+f(t) y(t)=0
$$

such that

$$
\begin{aligned}
& \lim _{t \rightarrow \infty} y(t)=1 \\
& \lim _{t \rightarrow \infty} y^{(i)}(t)=0 \quad i=1, \ldots, n-1
\end{aligned}
$$

where $y^{(i)}(t)=d^{i} y(t) / d t^{i}$.
(Hint: for $n=2$ we have the integral representation

$$
y(t)=y(a)+y^{\prime}(a) t-\int_{a}^{t}(t-s) f(s) y(s) d s
$$

Generalize this formula for any n and then iterate it.)
7. Show that the system of equation

$$
\left\{\begin{array}{l}
\dot{x}=x-y-\left(x^{2}+\frac{3}{2} y^{2}\right) x \\
\dot{y}=x+y-\left(x^{2}+\frac{1}{2} y^{2}\right) y
\end{array}\right.
$$

admit at least a periodic orbit.
8. Let A be a $n \times n$ constant matrix and $g: \mathbb{R} \mapsto \mathbb{R}^{n}$ be continuous and periodic of period T. Consider the differential equation:

$$
\begin{equation*}
\dot{x}(t)=A x(t)+g(t) . \tag{2}
\end{equation*}
$$

Show that if all eigenvalues of A have non 0 real part, then there exists a unique x_{0} such that the solution of (2) with $x(0)=x_{0}$ is periodic of period T.

