Topology Comprehensive Exam Spring 2024

Instructions: Complete 5 of the 8 problems, and **circle** their numbers below – the uncircled problems will **not** be graded.

 $1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8$

Write **only on the front side** of the solution pages. A **complete solution** of a problem is preferable to partial progress on several problems.

- 1. Let M and N be a pair of submanifolds of \mathbb{R}^n with $\dim(M) + \dim(N) < n$. Show that M and N become disjoint after an arbitrarily small translation of N.
- 2. Let X be a finite CW-complex and $X^{(i)}$ be its *i*-skeleton (that is the union of cells of dimension less than or equal to *i*). Show that the fundamental group of X depends only on $X^{(2)}$.
- 3. Let $p: \widetilde{X} \to X$ be a covering map, and suppose that X is path-connected. Show that for any pair of points $x, y \in X$ there is a bijection between $p^{-1}(x)$ and $p^{-1}(y)$.
- 4. Show that the tangent space at the identity element of the orthogonal group O(n) consists of skew-symmetric matrices.
- 5. Let M be a submanifold of \mathbf{R}^n which is diffeomorphic to S^k . If k + 2 < n, show that any map $f: S^1 \to (\mathbf{R}^n - M)$ is homotopic in $\mathbf{R}^n - M$ to a constant map. Is this true when n = k + 2?
- 6. Let Σ_g be a surface of genus g. Show that $\pi_1(\Sigma_2)$ contains $\pi_1(\Sigma_3)$ as a normal subgroup.
- 7. Let S and M be smooth manifolds, and $f, g: S \to M$ be homotopic maps. Suppose that ω is a closed k from on M and S is k-dimensional. Show that $\int_S f^* \omega = \int_S g^* \omega$.
- 8. Show that the real projective space \mathbf{RP}^n is not orientable when n is even.