Analysis Comprehensive Exam
Spring 2024

Student Number:

Instructions: Complete 5 of the 8 problems, and circle their numbers below — the uncircled
problems will not be graded.

Write only on the front side of the solution pages. A complete solution of a problem
is preferable to partial progress on several problems.

NOTE:
e All scalars in this exam are real unless explicitly stated otherwise.
e All functions in this exam are (extended) real-valued unless explicitly stated otherwise.

e The exterior Lebesgue measure of E C R? is denoted by |E|., and if E is measurable
then its Lebesgue measure is | E].

e The characteristic function of a set A is denoted by X 4.
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1. Assume that f and g belong to L'[0, 1], and define

Fa) = [ iy and G) = [ gl

You may assume without proof that h(z,y) = f(y)g(x) is measurable on [0,1)> =
[0,1] x [0, 1]. Prove that

Ammmm:mmm—lﬂwmm.

2. Forn > 1, let

ne- %

=—  f )
fn() g fore € [0,1]

Show that lim f,(z) =0 for = € (0, 1], and evaluate
n—oo

1

n—oo 0
3. The two parts of this problem are not related.

(a) Assume that Z C R satisfies |Z]. = 0. Prove that there exists at least one point
h € R such that the translated set Z 4 h contains no rational points.

(b) Let E C R be measurable, and assume functions f,,, f are measurable and finite a.e.
on E. Prove that if f,, converges in measure to f and ¢: R — R is uniformly continuous,
then ¢ o f,, converges in measure to ¢ o f.

4. Let £ C R"™ have finite Lebesgue measure. Let f; : E — R for k£ > 1. Prove that
{fx} converges in measure if and only if every subsequence of {fx} contains another
susbsequence of {f} that converges a.e. Hint: First prove that if {f;} converges in
measure, then a subsequence converges a.e.

5. Assume f has bounded variation on [a,b], and extend f to the real line by setting
f(x) = f(a) for x < a and f(x) = f(b) for x > b. Prove that there exists a constant
C > 0 such that
IS~ fls < Cltl, forallteR

where T} f(x) = f(x — t) denotes the translation of f by t.

6. Let E C RP be a set of finite Lebesgue measure. Let f : £ — [0, 00) be measurable, and

finite a.e. Prove that -
/ef = |E| + / e’ we(t)dt,
E 0

where wy is the distribution function of f, given by

wi(t) = [{z € B f (2) > 1} .
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7. Prove that if f, g € L*(R), then

lim [ f(z)g(z+n)dr = 0.

n—00 R

8. Prove that there is no norm under which the vector space P of polynomials with real
coefficients is a Banach space.
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