Student Number: []

Instructions: Complete 5 of the 8 problems, and circle their numbers below – the uncircled problems will not be graded.

1 2 3 4 5 6 7 8

Write only on the front side of the solution pages. A complete solution of a problem is preferable to partial progress on several problems.
1. Let G be a group of order 24, and suppose that for all $g \in G$ the order of the centralizer of g is divisible by 3. Show that G has a nontrivial center.

2. Suppose G is a group of order $q^r p^s$ where p and q are primes with $q > p^s$, where $r, s \geq 1$. Show that G contains a subgroup of order $q^r p$.

3. A matrix A is called idempotent if $A^2 = A$. Show that an idempotent matrix A with complex entries is diagonalizable.

4. For an ideal J of a commutative ring T, let \sqrt{J} denote the radical of J, which is the ideal T consisting of $t \in T$ such that $t^m \in J$ for some integer $m \geq 1$:

$$\sqrt{J} = \{t \in T \mid t^m \in J, m \in \mathbb{Z}, m \geq 1\}.$$

Suppose R and S are commutative rings with unit elements, and assume there is a surjective homomorphism $\varphi : R \to S$. If I is an ideal of R containing $\ker(\varphi)$, prove that $\varphi(\sqrt{I}) = \sqrt{\varphi(I)}$.

5. Suppose that p is a Fermat prime, i.e., p has the form $2^r + 1$ for some positive integer r, and let F denote the field with p elements. Let a, b be two elements of the multiplicative group F^\times. Show that either $a = b^n$ for some integer n, or $b = a^m$ for some integer m.

6. Let $L = \mathbb{Q}(\sqrt[3]{3}, \sqrt[7]{7})$. What is the degree of the extension $L : \mathbb{Q}$? What is the automorphism group $\text{Aut}(L : \mathbb{Q})$?

7. Let M be a left R-module where R is a principal ideal domain (with unit element). For any $r \in R$, let $M(r) := \{m \in M : rm = 0\}$; that is, it is the submodule of elements of M annihilated by r. (For the purposes of this exam you can assume this is a submodule of M.) If $r_1, r_2 \in R$ satisfy $(r_1, r_2) = R$ (note that (x, y) denotes the ideal generated by x and by y), prove that $M(r_1 r_2) \cong M(r_1) \oplus M(r_2)$.

8. Let $f(x) = x^4 - 2x^2 + 2 \in \mathbb{Q}[x]$. Show that $[L : \mathbb{Q}] = 4$ or $[L : \mathbb{Q}] = 8$, where L is the splitting field of $f(x)$ over \mathbb{Q}.