Algebra Comprehensive Exam Spring 2024

Student Number: \square

Instructions: Complete 5 of the 8 problems, and circle their numbers below - the uncircled problems will not be graded.

$$
\begin{array}{llllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8
\end{array}
$$

Write only on the front side of the solution pages. A complete solution of a problem is preferable to partial progress on several problems.

1. Let G be a group of order 24, and suppose that for all $g \in G$ the order of the centralizer of g is divisible by 3 . Show that G has a nontrivial center.
2. Suppose G is a group of order $q^{r} p^{s}$ where p and q are primes with $q>p^{s}$, where $r, s \geq 1$. Show that G contains a subgroup of order $q^{r} p$.
3. A matrix A is called idempotent if $A^{2}=A$. Show that an idempotent matrix A with complex entries is diagonalizable.
4. For an ideal J of a commutative ring T, let \sqrt{J} denote the radical of J, which is the ideal T consisting of $t \in T$ such that $t^{m} \in J$ for some integer $m \geq 1$:

$$
\sqrt{J}=\left\{t \in T \mid t^{m} \in J, m \in \mathbf{Z}, m \geq 1\right\} .
$$

Suppose R and S are commutative rings with unit elements, and assume there is a surjective homomorpism $\varphi: R \rightarrow S$. If I is an ideal of R containing $\operatorname{ker}(\varphi)$, prove that $\varphi(\sqrt{I})=\sqrt{\varphi(I)}$.
5. Suppose that p is a Fermat prime, i.e., p has the form $2^{r}+1$ for some positive integer r, and let F denote the field with p elements. Let a, b be two elements of the multiplicative group F^{\times}. Show that either $a=b^{n}$ for some integer n, or $b=a^{m}$ for some integer m.
6. Let $L=\mathbf{Q}(\sqrt[3]{3}, \sqrt[5]{7})$. What is the degree of the extension $L: \mathbf{Q}$? What is the automorphism group $\operatorname{Aut}(L: \mathbf{Q})$?
7. Let M be a left R-module where R is a principal ideal domain (with unit element). For any $r \in R$, let $M(r):=\{m \in M: r m=0\}$; that is, it is the submodule of elements of M annihilated by r. (For the purposes of this exam you can assume this is a submodule of M.) If $r_{1}, r_{2} \in R$ satisfy $\left(r_{1}, r_{2}\right)=R$ (note that (x, y) denotes the ideal generated by x and by y), prove that $M\left(r_{1} r_{2}\right) \cong M\left(r_{1}\right) \oplus M\left(r_{2}\right)$.
8. Let $f(x)=x^{4}-2 x^{2}+2 \in \mathbf{Q}[x]$. Show that $[L: \mathbf{Q}]=4$ or $[L: \mathbf{Q}]=8$, where L is the splitting field of $f(x)$ over \mathbf{Q}.

