Algebra Comprehensive Exam Spring 2024

Student Number:	
-----------------	--

Instructions: Complete 5 of the 8 problems, and **circle** their numbers below – the uncircled problems will **not** be graded.

 $1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8$

Write **only on the front side** of the solution pages. A **complete solution** of a problem is preferable to partial progress on several problems.

- 1. Let G be a group of order 24, and suppose that for all $g \in G$ the order of the centralizer of g is divisible by 3. Show that G has a nontrivial center.
- 2. Suppose G is a group of order $q^r p^s$ where p and q are primes with $q > p^s$, where $r, s \ge 1$. Show that G contains a subgroup of order $q^r p$.
- 3. A matrix A is called *idempotent* if $A^2 = A$. Show that an idempotent matrix A with complex entries is diagonalizable.
- 4. For an ideal J of a commutative ring T, let \sqrt{J} denote the *radical* of J, which is the ideal T consisting of $t \in T$ such that $t^m \in J$ for some integer $m \ge 1$:

$$\sqrt{J} = \{ t \in T \mid t^m \in J, m \in \mathbf{Z}, m \ge 1 \}.$$

Suppose R and S are commutative rings with unit elements, and assume there is a surjective homomorpism $\varphi : R \to S$. If I is an ideal of R containing ker(φ), prove that $\varphi(\sqrt{I}) = \sqrt{\varphi(I)}$.

- 5. Suppose that p is a Fermat prime, i.e., p has the form $2^r + 1$ for some positive integer r, and let F denote the field with p elements. Let a, b be two elements of the multiplicative group F^{\times} . Show that either $a = b^n$ for some integer n, or $b = a^m$ for some integer m.
- 6. Let $L = \mathbf{Q}(\sqrt[3]{3}, \sqrt[5]{7})$. What is the degree of the extension $L : \mathbf{Q}$? What is the automorphism group $\operatorname{Aut}(L : \mathbf{Q})$?
- 7. Let M be a left R-module where R is a principal ideal domain (with unit element). For any $r \in R$, let $M(r) := \{m \in M : rm = 0\}$; that is, it is the submodule of elements of M annihilated by r. (For the purposes of this exam you can assume this is a submodule of M.) If $r_1, r_2 \in R$ satisfy $(r_1, r_2) = R$ (note that (x, y) denotes the ideal generated by x and by y), prove that $M(r_1r_2) \cong M(r_1) \oplus M(r_2)$.
- 8. Let $f(x) = x^4 2x^2 + 2 \in \mathbf{Q}[x]$. Show that $[L : \mathbf{Q}] = 4$ or $[L : \mathbf{Q}] = 8$, where L is the splitting field of f(x) over \mathbf{Q} .