Discrete Mathematics Comprehensive Exam Spring 2024

Student Number:

Instructions: Complete exactly 5 of the given 6 problems and circle their numbers below. The uncircled problems will not be graded.

$$
\begin{array}{llllll}
1 & 2 & 3 & 4 & 5 & 6
\end{array}
$$

Write only on the front side of the solution pages. A complete solution of a problem is preferable to partial progress on several problems.

All graphs in the following problems are finite and simple.

1. Let G be a nonempty graph with average degree at least 16 . Show that G has a subgraph H such that H has minimum degree at least 3 and every set of 3 vertices in H is contained in an even cycle of H .
2. Let G be a graph that does not contain an induced copy of $\mathrm{K}_{1,4}$. Show that

$$
x(\mathrm{G}) \leqslant\binom{\omega(\mathrm{G})+2}{3}
$$

where $\omega(\mathrm{G})$ is the clique number of G .
3. Let k be an integer with $\mathrm{k} \geqslant 2$ and let G be a connected graph such that G does not contain K_{k} as a minor. Show that $\chi(G)<2^{k}$.
4. Fix integers $n \geqslant k \geqslant 10$. A set $X \subseteq\{0,1\}^{n}$ of binary strings of length n is called k-full if for every k distinct indices $i_{1}, \ldots, \mathfrak{i}_{k} \in[n]$, the set $\left\{\left(x_{i_{1}}, \ldots, x_{i_{k}}\right):\left(x_{1}, \ldots, x_{n}\right) \in X\right\}$ contains all 2^{k} binary strings of length k. Prove that there exists a k-full set $X \subseteq\{0,1\}^{n}$ of size at most $\left\lceil k 2^{k} \log n\right\rceil$. (The logarithm is base e.)
5. Fix integers $n \geqslant k \geqslant 10$. Let a_{1}, \ldots, a_{n} be real numbers with $\left|a_{i}\right| \leqslant 1$ for all $i \in[n]$. Show that there exists a choice of signs $\epsilon_{1}, \ldots, \epsilon_{n} \in\{+1,-1\}$ such that for all $1 \leqslant i \leqslant n-k+1$,

$$
\left|\epsilon_{i} a_{i}+\epsilon_{i+1} a_{i+1}+\cdots+\epsilon_{i+k-1} a_{i+k-1}\right| \leqslant 10 \sqrt{k \log k} .
$$

(The logarithm is base e.)
6. Let $G \sim \mathbb{G}(n, 1 / 2)$ be the n-vertex Erdős-Rényi random graph with edge probability $1 / 2$. Let $\Delta(\mathrm{G})$ denote the maximum degree of G . Show that

$$
\mathbb{P}[\Delta(G) \leqslant n / 2] \geqslant 2^{-n} .
$$

