Probability Comprehensive Exam Fall 2024

Student Number:	
Instructions: Complete 5	of the 8 problems, and circle their numbers below – the uncircled
problems will not be grad	led.

 $1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8 \quad 9$

Write **only on the front side** of the solution pages. A **complete solution** of a problem is preferable to partial progress on several problems.

1. Let Ω be a sample space, let \mathcal{F} be a field of subsets of Ω and let \mathbb{P} be a probability measure on \mathcal{F} . Assume now that $A_1, A_2, \dots \in \mathcal{F}$ are nearly disjoint in the sense that $\mathbb{P}(A_i \cap A_j) = 0$, for $i \neq j$ and are such that $\bigcup_{n=1}^{+\infty} A_n \in \mathcal{F}$. Is it true that

$$\mathbb{P}(\bigcup_{n=1}^{+\infty} A_n) = \sum_{n=1}^{+\infty} \mathbb{P}(A_n)?$$

- 2. For any real x, let $\{x\}$ denote the fractional part of x; that is $\{x\}$ is the unique real in [0,1) such that $x \{x\}$ is an integer. Consider the probability space $(\Omega, \mathcal{F}, \mathbb{P})$ where $\Omega = (0,1], \mathcal{F}$ is the associated Borel σ -field and \mathbb{P} is the Lebesgue measure.
 - (i) Show that $\mathbb{P}(\omega \in \Omega : \{n\omega\} \le 1/2 \text{ for infinitely many integers } n) \ge 1/2.$
 - (ii) Show that $\mathbb{P}(\omega \in \Omega : \{n\omega\} \le 1/n \log^2 n \text{ for infinitely many integers } n) = 0.$
- 3. Let $\{X_n\}$ be a sequence of random variables with values in [0, 1] and such that, for some a > -1,

$$\mathbb{E}X_n^k \to \frac{a+1}{a+1+k}$$
 as $n \to \infty$, $k = 0, 1, 2, \dots$

Prove that $\{X_n\}$ converges in distribution to a random variable X and find the distribution of X.

4. Let $X, X_1, \ldots, X_n, \ldots$ be i.i.d. random variables and let $S_n := X_1 + \cdots + X_n$. Suppose, for some p > 1, $\mathbb{E}|X|^{1/p} < \infty$. Prove that

$$\frac{S_n}{n^p} \to 0 \text{ as } n \to \infty \text{ a.s.}$$

- 5. Let X, Y be independent random variables with $\mathbb{E}X^2 < \infty, \mathbb{E}Y^2 < \infty$. Show that, if X + Y and X Y are independent, then X and Y are both normal random variables and $\operatorname{Var}(X) = \operatorname{Var}(Y)$.
- 6. Let X be a real valued random variable with density p and let $f : \mathbb{R} \to \mathbb{R}$ be a Borel measurable function such that $\mathbb{E}|f(X)| < \infty$. Find $\mathbb{E}(f(X)|X^2)$.
- 7. Let $(X_n)_{n\geq 1}$ be a sequence of iid centered random variables defined on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and such that $0 < \mathbb{E}X_1^2 < +\infty$, and let $(a_n)_{n\geq 1}$ be a sequence of reals. Show that the series $\sum_{n=1}^{+\infty} a_n X_n$ converges with probability one if and only if $\sum_{n=1}^{+\infty} a_n^2 < +\infty$.

$$Y_n = \sum_{k=1}^n a_{n-k} X_k, \quad n = 1, 2, \dots$$

(i) Does the sequence $(Y_n)_{n\geq 1}$ converge in law? If yes, can you identify the limiting distribution?

(ii) Are the random variables Y_n and Y_{n+1} , $n \ge 1$ dependent?