Probability Comprehensive Exam
Fall 2024

Student Number:

Instructions: Complete 5 of the 8 problems, and circle their numbers below — the uncircled
problems will not be graded.

Write only on the front side of the solution pages. A complete solution of a problem
is preferable to partial progress on several problems.
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1. Let € be a sample space, let F be a field of subsets of €2 and let P be a probability
measure on F. Assume now that Aj, Ag,--- € F are nearly disjoint in the sense that
P(A; N A;) =0, for i # j and are such that U;> A, € F. Is it true that

P(UF=A,) ZIP’

2. For any real z, let {x} denote the fractional part of x; that is {z} is the unique real in
[0,1) such that © — {x} is an integer. Consider the probability space (€2, F,P) where
= (0,1], F is the associated Borel o-field and P is the Lebesgue measure.

(i) Show that P(w € © : {nw} < 1/2 for infinitely many integers n) > 1/2.
(ii) Show that P(w € Q : {nw} < 1/nlog®n for infinitely many integers n) = 0.

3. Let {X,,} be a sequence of random variables with values in [0, 1] and such that, for some
a>—1,
a+1

a+1+k

Prove that {X,} converges in distribution to a random variable X and find the distri-
bution of X.

EXS% asn —oo, k=0,1,2,....

4. Let X, Xq,...,X,,... beiid. random variables and let .S,, := X; +---+ X,,. Suppose,
for some p > 1, E|X|'/? < 0o. Prove that

S,
= 3 0asn— oo a.s.
np

5. Let X,Y be independent random variables with EX? < 0o, EY? < oo. Show that, if
X 4+Y and X — Y are independent, then X and Y are both normal random variables
and Var(X) = Var(Y).

6. Let X be a real valued random variable with density p and let f : R — R be a Borel
measurable function such that E|f(X)| < oo. Find E(f(X)|X?).

7. Let (X,,)n>1 be a sequence of iid centered random variables defined on a probability space
(2, F,P) and such that 0 < EX? < +oo, and let (a,),>1 be a sequence of reals Show
that the series Z 1 an X, converges with probability one if and only if S a2 < 400,

nln
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8. Let (X,)n>1 be a sequence of iid standard normal random variables defined on a prob-
ability space (2, F,P). Let (a,)n>0 be a sequence of reals such that a;ja;4; = 0, for all

j >0, and such that 3 7% a3 < +oo. Let

Yn:ianka, n:1,2,...

k=1

(i) Does the sequence (Y;,)n>1 converge in law? If yes, can you identify the limiting
distribution?

(ii) Are the random variables Y,, and Y;,11, n > 1 dependent?
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