Topology Comprehensive Exam Fall 2024

Student Number:	
-----------------	--

Instructions: Complete 5 of the 8 problems, and **circle** their numbers below – the uncircled problems will **not** be graded.

 $1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8$

Write **only on the front side** of the solution pages. A **complete solution** of a problem is preferable to partial progress on several problems.

- 1. Show that if a smooth manifold can be covered by two coordinate charts whose intersection is connected then it is orientable.
- 2. Let $GL(n, \mathbf{R})$ be the space of $n \times n$ real valued matrices with nonzero determinant, endowed with its standard smooth manifold structure as a subset of \mathbf{R}^{n^2} . Show that the determinant map $f: GL(n, \mathbf{R}) \to \mathbf{R}$ is a submersion.
- 3. Let M be a compact *n*-manifold without boundary smoothly embedded in \mathbb{R}^{n+1} . Suppose that the origin o of \mathbb{R}^n does not lie on M. Show that there exists a line passing through o which intersects M at most finitely many times.
- 4. Let M be $\mathbf{S}^1 \times \mathbf{S}^{n-1}$ minus one point, where $n \ge 2$. Use intersection theory to show that there is no smooth embedding of M into \mathbf{R}^n .
- 5. Show that the antipodal map $f: \mathbf{S}^n \to \mathbf{S}^n$, f(x) := -x, is homotopic to the identity if and only if n is odd.
- 6. Let Σ_g be the closed orientable surface of genus g, that is the 2-sphere with g handles attached. For every $g \geq 3$, show that $\pi_1(\Sigma_g)$ is isomorphic to a normal subgroup of $\pi_1(\Sigma_2)$.
- 7. The Klein bottle K may be described as a square with opposite sides identified. The sides of the square project to the wedge sum of two circles inside K. Show that K retracts to one of the circle summands, but does not retract to the other circle.
- 8. Let X be the complement of the z-axis in \mathbb{R}^3 . Show that every continuous map from \mathbb{RP}^2 to X is null-homotopic.