Analysis Comprehensive Exam
Fall 2024

Student Number:

Instructions: Complete 5 of the 8 problems, and circle their numbers below — the uncircled
problems will not be graded.

Write only on the front side of the solution pages. A complete solution of a problem
is preferable to partial progress on several problems.
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1. (a) Prove that a proper subspace Y of a normed space X has empty interior.

(b) Prove that a Banach space cannot be written as a countable union of proper closed
subspaces.

(Recall that a subspace Y of a vector space X is called proper if Y # @ and Y # X.)

2. Suppose v is the Borel measure on (0, 00) given by

dt

for a Borel set E C R.

Suppose K is a continuous function on (0, 00) x (0, 00) and there exists € > 0 such that
. (S8 T\¢
|K(s,t)] < Inln(g, —> for every s,t € (0, 00).
s

Prove that the operator

T(F)(t) = / " K(s, ) f(s)dw(s)

is bounded from LP(v) to LP(v) for every 1 < p < oo.

3. For any Borel set A C R? with |A| < co (where |A| denotes Lebesgue measure), prove

that )
/ |—|dy S 2\/71"14‘.
AlY

4. Suppose that (X, A, 1) is a o-finite measure space.

(a) Prove that if £ € A satisfies u(E) > 0, then there exists F' C E, F' € A with
0 < u(F) < oc.

(b) Prove that if f and g are real valued measurable functions that satisfy | pfdu =
Il p 9dp for every E € A, then f = g p-almost everywhere.

(c). Give an example to show that the conclusion of part (b) can fail without the
assumption of o-finiteness.

5. Let f: R+ R be Lebesgue integrable.
(a) Prove that there is a sequence of polynomials {p,} such that for a.e. =z € R,

Tim p,, (z) = f ().
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(Hint: You may assume that for each finite b > a and € > 0, there exists a polynomial
p such that

b
/ (@) —p ()] de < <)

(b) Deduce that given ¢ > 0, and a compact interval [a, b], you can find a set F' C [a, b]
of measure < ¢ such that {p,} converges uniformly to f on [a,b] \ F.

6. Let 0 < g < 1.
For measurable sets F' C R, let |F'| denote the Lebesgue measure of F.
(a) Construct a measurable set E in [—1, 1] such that

hm sup—m@m@m@m@ =
6—>O+p 20 ﬁ
but BN [=6, 6]
hagcﬂlf T 0

(b) What does Lebesgue’s differentiation theorem say about

. |EN[z =0,z + 9]
lim
5—0+ 20

for a.e. x € E7 Just state your answer for (b), do not prove it.

7. Let p and v be measures on [0, 00) with finite total mass, so that p ([0,00)) < oo and
v ([0,00)) < co. Let r € (0,1),s > 0 and w be the measure defined by

w=ru+ sv.

(a) Show that p is absolutely continuous with respect to w.

(b) Let g denote the Radon-Nikodym derivative of p with respect to w, so that

/fduz/fgdw

for every integrable function f. Show that

1
0<g<—ae(u
r
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8. Let f: R™ — R be integrable in R". Let K : R" — [0,00) be nonnegative, measurable,
and bounded in R", with [, K =1 and K (t) = 0 for [t/ > 1. For h > 0, and x € R",
define

t
Oy [f](x) =h"" fx+t)K <E> dt.
R
and

Q(f;h) =sup | |f(x+1t)—f(x)|dx.

jtl<h Jrn
(a) Prove that
P[] (%) = f (x)[ dx <Q(f;h).

Rn
(b) Prove that
hlg(l)lJrQ (i) =0.
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