Analysis Comprehensive Exam Fall 2024

Student Number:		
-----------------	--	--

Instructions: Complete 5 of the 8 problems, and **circle** their numbers below – the uncircled problems will **not** be graded.

 $1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8$

Write **only on the front side** of the solution pages. A **complete solution** of a problem is preferable to partial progress on several problems.

- 1. (a) Prove that a proper subspace Y of a normed space X has empty interior.
 - (b) Prove that a Banach space cannot be written as a countable union of proper closed subspaces.

(Recall that a subspace Y of a vector space X is called proper if $Y \neq \emptyset$ and $Y \neq X$.)

2. Suppose ν is the Borel measure on $(0, \infty)$ given by

$$\nu(E) = \int_E \frac{dt}{t}$$

for a Borel set $E \subset \mathbb{R}$.

Suppose K is a continuous function on $(0,\infty) \times (0,\infty)$ and there exists $\varepsilon > 0$ such that

$$|K(s,t)| \le \min\left(\frac{s}{t}, \frac{t}{s}\right)^{\varepsilon}$$
 for every $s, t \in (0, \infty)$.

Prove that the operator

$$T(f)(t) = \int_0^\infty K(s,t)f(s)d\nu(s)$$

is bounded from $L^p(\nu)$ to $L^p(\nu)$ for every 1 .

3. For any Borel set $A \subset \mathbf{R}^2$ with $|A| < \infty$ (where |A| denotes Lebesgue measure), prove that

$$\int_{A} \frac{1}{|y|} dy \le 2\sqrt{\pi |A|}.$$

4. Suppose that (X, \mathcal{A}, μ) is a σ -finite measure space.

(a) Prove that if $E \in \mathcal{A}$ satisfies $\mu(E) > 0$, then there exists $F \subset E$, $F \in \mathcal{A}$ with $0 < \mu(F) < \infty$.

(b) Prove that if f and g are real valued measurable functions that satisfy $\int_E f d\mu = \int_E g d\mu$ for every $E \in \mathcal{A}$, then $f = g \mu$ -almost everywhere.

(c). Give an example to show that the conclusion of part (b) can fail without the assumption of σ -finiteness.

5. Let $f : \mathbb{R} \to \mathbb{R}$ be Lebesgue integrable.

(a) Prove that there is a sequence of polynomials $\{p_n\}$ such that for a.e. $x \in \mathbb{R}$,

$$\lim_{n \to \infty} p_n\left(x\right) = f\left(x\right).$$

(Hint: You may assume that for each finite b > a and $\varepsilon > 0$, there exists a polynomial p such that

$$\int_{a}^{b} \left| f\left(x \right) - p\left(x \right) \right| dx < \varepsilon.)$$

(b) Deduce that given $\delta > 0$, and a compact interval [a, b], you can find a set $F \subset [a, b]$ of measure $\langle \delta$ such that $\{p_n\}$ converges uniformly to f on $[a, b] \setminus F$.

6. Let $0 < \beta < 1$.

For measurable sets $F \subset \mathbb{R}$, let |F| denote the Lebesgue measure of F.

(a) Construct a measurable set E in [-1, 1] such that

$$\limsup_{\delta \to 0+} \frac{|E \cap [-\delta, \delta]|}{2\delta} = \beta$$

but

$$\liminf_{\delta \to 0+} \frac{|E \cap [-\delta, \delta]|}{2\delta} = 0.$$

(b) What does Lebesgue's differentiation theorem say about

$$\lim_{\delta \to 0+} \frac{|E \cap [x - \delta, x + \delta]|}{2\delta}$$

for a.e. $x \in E$? Just state your answer for (b), do not prove it.

7. Let μ and ν be measures on $[0, \infty)$ with finite total mass, so that $\mu([0, \infty)) < \infty$ and $\nu([0, \infty)) < \infty$. Let $r \in (0, 1), s > 0$ and ω be the measure defined by

$$\omega = r\mu + s\nu.$$

- (a) Show that μ is absolutely continuous with respect to ω .
- (b) Let g denote the Radon-Nikodym derivative of μ with respect to ω , so that

$$\int f \ d\mu = \int fg \ d\omega$$

for every integrable function f. Show that

$$0 \le g \le \frac{1}{r}$$
 a.e. (μ)

8. Let $f : \mathbb{R}^n \to \mathbb{R}$ be integrable in \mathbb{R}^n . Let $K : \mathbb{R}^n \to [0, \infty)$ be nonnegative, measurable, and bounded in \mathbb{R}^n , with $\int_{\mathbb{R}^n} K = 1$ and $K(\mathbf{t}) = 0$ for $|\mathbf{t}| \ge 1$. For h > 0, and $\mathbf{x} \in \mathbb{R}^n$, define

$$\Phi_{h}[f](\mathbf{x}) = h^{-n} \int_{\mathbb{R}^{n}} f(\mathbf{x} + \mathbf{t}) K\left(\frac{\mathbf{t}}{h}\right) d\mathbf{t}.$$

and

$$\Omega\left(f;h\right) = \sup_{|\mathbf{t}| \le h} \int_{\mathbb{R}^{n}} \left| f\left(\mathbf{x} + \mathbf{t}\right) - f\left(\mathbf{x}\right) \right| d\mathbf{x}.$$

(a) Prove that

$$\int_{\mathbb{R}^{n}} \left| \Phi_{h} \left[f \right] \left(\mathbf{x} \right) - f \left(\mathbf{x} \right) \right| d\mathbf{x} \leq \Omega \left(f; h \right).$$

(b) Prove that

$$\lim_{h\to 0+}\Omega\left(f;h\right)=0.$$