Probability Comprehensive Exam
Spring 2023

Student Number: []

Instructions: Complete 5 of the 8 problems, and circle their numbers below – the uncircled problems will not be graded.

1 2 3 4 5 6 7 8

Write only on the front side of the solution pages. A complete solution of a problem is preferable to partial progress on several problems.
1. Let \(X_1, X_2, \ldots \) be i.i.d. random variables that are uniformly distributed on the interval \([-1, 1]\). Does the following limit exist almost surely:
\[
\lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} \frac{1}{X_i}?
\]
Prove or disprove.

2. a) Let \(X, Y \) be identically distributed random variables taking two values; that is, there exist \(a, b \in \mathbb{R} \) with \(a < b \) such that \(\mathbb{P}(X \in \{a, b\}) = 1 \). Suppose that \(\mathbb{E}XY = \mathbb{E}X \mathbb{E}Y \). Show that \(X \) and \(Y \) are independent.

b) Let \(X, Y \) be identically distributed random variables taking three values; that is, there exist \(a, b, c \in \mathbb{R} \) such that \(\mathbb{P}(X \in \{a, b, c\}) = 1 \). Suppose that \(\mathbb{E}XY = \mathbb{E}X \mathbb{E}Y \). Must \(X \) and \(Y \) be independent?

3. Prove or disprove: there exist i.i.d. random variables \(X, Y \) such that the random variable \(X - Y \) is uniformly distributed on the interval \([-1, 1]\).

4. Let \((X_n)\) be a sequence of random variables with corresponding distribution functions \((F_n)\). Let \(X \) be another random variable with distribution function \(F \). Show that the following are equivalent.
 1. \((X_n)\) converges to \(X \) in distribution.
 2. There exists a dense subset \(S \) of \(\mathbb{R} \) such that \(F_n(x) \to F(x) \) as \(n \to \infty \) for every \(x \in S \).

5. Let \((X_n)_{n \geq 1}\) be a sequence of independent random variables. Prove or disprove the following equivalence \(\mathbb{P}(\sup_n X_n < +\infty) = 1 \) if and only if there exists a positive real \(K \) such that \(\sum_{n=1}^{\infty} \mathbb{P}(X_n > K) < +\infty \).

6. Let \(X \) and \(Y \) be two bounded random variables such that for all \(k = 0, 1, 2, 3, \ldots \) and all \(\ell = 0, 1, 2, 3, \ldots \),
\[
\mathbb{E}(X^k Y^\ell) = \mathbb{E}(X^k) \mathbb{E}(Y^\ell).
\]
Are \(X \) and \(Y \) independent?

7. Let \(\mathbb{P}_n \) and \(\mathbb{P}_\infty \) be probability measures which are absolutely continuous with respect to the Lebesgue measure on \(\mathbb{R} \) and with respective densities \(f_n \) and \(f_\infty \).
 i) Show that if \(\lim_{n \to \infty} f_n(x) = f_\infty(x) \) almost everywhere (Leb.), then as \(n \to +\infty \),
\[
\mathbb{P}_n \Longrightarrow \mathbb{P}_\infty;
\]
that is, \mathbb{P}_n converges to \mathbb{P}_∞ weakly.

(ii) Is the converse implication to the statement (i) above true?

8. Let X_1, X_2, \ldots, be centered i.i.d. random variables with finite variance equal to 1. Let

$$Z_n = \frac{1}{\sqrt{n}} \sum_{k=1}^{n} X_k, \quad n = 1, 2, \ldots$$

Can the sequence $(Z_n)_{n \geq 1}$ converge almost surely to a random variable Z?