Probability Comprehensive Exam Spring 2023

Student Number:	
-----------------	--

Instructions: Complete 5 of the 8 problems, and **circle** their numbers below – the uncircled problems will **not** be graded.

 $1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8$

Write **only on the front side** of the solution pages. A **complete solution** of a problem is preferable to partial progress on several problems.

1. Let X_1, X_2, \ldots be i.i.d. random variables that are uniformly distributed on the interval [-1, 1]. Does the following limit exist almost surely:

$$\lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} \frac{1}{X_i}?$$

Prove or disprove.

- 2. a) Let X, Y be identically distributed random variables taking two values; that is, there exist $a, b \in \mathbb{R}$ with a < b such that $\mathbb{P}(X \in \{a, b\}) = 1$. Suppose that $\mathbb{E}XY = \mathbb{E}X\mathbb{E}Y$. Show that X and Y are independent.
 - b) Let X, Y be identically distributed random variables taking three values; that is, there exist $a, b, c \in \mathbb{R}$ such that $\mathbb{P}(X \in \{a, b, c\}) = 1$. Suppose that $\mathbb{E}XY = \mathbb{E}X\mathbb{E}Y$. Must X and Y be independent?
- 3. Prove or disprove: there exist i.i.d. random variables X, Y such that the random variable X Y is uniformly distributed on the interval [-1, 1].
- 4. Let (X_n) be a sequence of random variables with corresponding distribution functions (F_n) . Let X be another random variable with distribution function F. Show that the following are equivalent.
 - 1. (X_n) converges to X in distribution.
 - 2. There exists a dense subset S of \mathbb{R} such that $F_n(x) \to F(x)$ as $n \to \infty$ for every $x \in S$.
- 5. Let $(X_n)_{n\geq 1}$ be a sequence of independent random variables. Prove or disprove the following equivalence $\mathbb{P}(\sup_n X_n < +\infty) = 1$ if and only if there exists a positive real K such that $\sum_{n=1}^{\infty} \mathbb{P}(X_n > K) < +\infty$.
- 6. Let X and Y be two bounded random variables such that for all k = 0, 1, 2, 3, ... and all $\ell = 0, 1, 2, 3, ...$,

$$\mathbb{E}(X^k Y^\ell) = \mathbb{E}(X^k)\mathbb{E}(Y^\ell).$$

Are X and Y independent?

- 7. Let \mathbb{P}_n and \mathbb{P}_{∞} be probability measures which are absolutely continuous with respect to the Lebesgue measure on \mathbb{R} and with respective densities f_n and f_{∞} .
 - (i) Show that if $\lim_{n\to\infty} f_n(x) = f_\infty(x)$ almost everywhere (Leb.), then as $n \to +\infty$,

$$\mathbb{P}_n \Longrightarrow \mathbb{P}_{\infty};$$

- that is, \mathbb{P}_n converges to \mathbb{P}_∞ weakly.
- (ii) Is the converse implication to the statement (i) above true?
- 8. Let X_1, X_2, \ldots , be centered i.i.d. random variables with finite variance equal to 1. Let

$$Z_n = \frac{1}{\sqrt{n}} \sum_{k=1}^n X_k, \ n = 1, 2, \dots$$

Can the sequence $(Z_n)_{n\geq 1}$ converge almost surely to a random variable Z?