Discrete Mathematics Comprehensive Exam Spring 2023 | Student Number | : | | | | | | | | |--|---|---|---|---|---|---|--|--| | Instructions: Complete exactly 5 of the given 6 problems and circle their numbers below. The uncircled problems will not be graded. | | | | | | | | | | | 1 | 2 | 3 | 4 | 5 | 6 | | | Write **only on the front side** of the solution pages. A **complete solution** of a problem is preferable to partial progress on several problems. All graphs in this exam are finite and simple. 1. Show that for integers $s \ge 2$ and $t \ge 2$, there is a graph G with chromatic number $$\chi(G) \geqslant \frac{R(s,t+1)-1}{s-1}$$ that contains neither $K_{1,s}$ nor K_{t+1} as induced subgraphs. (Here $R(r_1,r_2)$ is the minimum integer $\mathfrak n$ such that every graph of order at least $\mathfrak n$ has an independent set of size r_1 or a clique of size r_2 .) - 2. Let G be a 3-edge-connected graph and let H be a bipartite subgraph of G with the most edges. Prove that H is 2-edge-connected. - 3. Suppose G is a graph that does not contain any K_4 -subdivision. Show that $\chi(G) \leqslant 3$. (Hint: You could start by proving that every 3-connected graph contains a K_4 -subdivision.) - 4. For a natural number \mathfrak{n} , let $C_\mathfrak{n}$ denote the expected number of cycles in a uniformly random permutation of the set $[\mathfrak{n}]$. Show that $C_\mathfrak{n} \sim \log \mathfrak{n}$, i.e., the ratio $C_\mathfrak{n}/\log \mathfrak{n}$ tends to 1 as $\mathfrak{n} \to \infty$. (The logarithm is base e.) - 5. Prove that the unit sphere in \mathbb{R}^n contains a set of at least $e^{n/100}$ points all whose pairwise distances are at least 1. ('Distance' here means the usual Euclidean distance in \mathbb{R}^n .) - 6. Recall that a family $\mathcal F$ of sets is *decreasing* if for every $A\in\mathcal F$, all subsets of A also belong to $\mathcal F$. Let $\mathcal F_1,...,\mathcal F_k$ be decreasing families of subsets of [n] such that $\left|\mathcal F_i\right|=2^{n-1}$ for all i. Show that $\left|\bigcap_{i=1}^k \mathcal F_i\right|\geqslant 2^{n-k}$ and $\left|\bigcup_{i=1}^k \mathcal F_i\right|\leqslant 2^n-2^{n-k}$.