Instructions: Complete 5 of the 8 problems, and circle their numbers below – the uncircled problems will not be graded.

1 2 3 4 5 6 7 8

Write only on the front side of the solution pages. A complete solution of a problem is preferable to partial progress on several problems.

NOTE:

• All scalars in this exam are real unless explicitly stated otherwise.

• All functions in this exam are (extended) real-valued unless explicitly stated otherwise.

• The exterior Lebesgue measure of $E \subseteq \mathbb{R}^d$ is denoted by $|E|_e$, and if E is measurable then its Lebesgue measure is $|E|$.

• The characteristic function of a set A is denoted by χ_A.
1. (a) Suppose that \(f \) is a monotone increasing function that is absolutely continuous on \([0, 1]\). Prove that if \(U \) is any open subset of \([0, 1]\), then
\[
|f(U)| = \int_U f'(x) \, dx.
\]
(b) Give an example that shows that part (a) need not hold if \(f \) is continuous but not absolutely continuous.

2. The two parts of this problem are not related.
 (a) Assume that functions \(f_n \in L^1(\mathbb{R}) \) are such that \(f_n \to f \) a.e., and there exists some \(M \geq 0 \) such that
\[
\int_{-\infty}^{\infty} \max\{|f_1|, \ldots, |f_n|\} < M, \quad \text{for every } n \in \mathbb{N}.
\]
Prove that \(f_n \to f \) in \(L^1 \)-norm, i.e., \(\|f - f_n\|_1 \to 0 \) as \(n \to \infty \).
(b) Prove that if \(f \in L^p(\mathbb{R}) \), where \(1 \leq p < \infty \), then \(\lim_{k \to \infty} k^p \|\{x \in \mathbb{R} : |f(x)| > k\} = 0 \).

3. Prove that
\[
F(t) = \int_{-\infty}^{\infty} \frac{\sin xt}{1 + x^4} \, dx
\]
is differentiable on \((0, \infty)\).

4. Prove that there is a unique function \(f \in C[0, 1] \) that satisfies
\[
f(x) = \int_0^x tf(t) \, dt, \quad \text{for } x \in [0, 1].
\]

5. Let \(E \) be a Lebesgue measurable subset of \(\mathbb{R}^d \). Assume that:
 (a) \(f_n, g_n, f, g \in L^1(E) \),
 (b) \(f_n \to f \) pointwise a.e.,
 (c) \(g_n \to g \) pointwise a.e.,
 (d) \(|f_n| \leq g_n \) a.e., and
 (e) \(\int_E g_n \to \int_E g \).

Prove that \(\int_E f_n \to \int_E f \) and \(\|f - f_n\|_1 \to 0 \).

6. Let \(A \) and \(B \) be measurable subsets of \(\mathbb{R} \), and let \(A + B = \{a + b : a \in A, b \in B\} \).
 (a) Fix \(\alpha, \beta \in \mathbb{R} \) and \(r > 0 \). Prove that if \(A \subseteq [\alpha, \alpha+r] \) and \(B \subseteq [\beta, \beta+r] \) have measures \(|A|, |B| > r/2 \), then \(\alpha + \beta + r \in A + B \).
 (b) Prove that if \(A + B \subseteq \mathbb{R} \setminus \mathbb{Q} \), then either \(|A| = 0 \) or \(|B| = 0 \).
7. Assume that k is a measurable function on \mathbb{R}^2 and there are strictly positive measurable functions u, v on \mathbb{R} such that
\[
\int_{-\infty}^{\infty} |k(x, y)| v(y) \, dy \leq C_1 \, u(x), \quad \text{for a.e. } x,
\]
\[
\int_{-\infty}^{\infty} |k(x, y)| u(x) \, dx \leq C_2 \, v(y), \quad \text{for a.e. } y.
\]
Prove that operator
\[
L_k f(x) = \int_{-\infty}^{\infty} k(x, y) \, f(y) \, dy, \quad \text{for } f \in L^2(\mathbb{R}),
\]
defines a bounded mapping of $L^2(\mathbb{R})$ into itself. Give a bound on the operator norm of L_k in terms of C_1 and C_2.

Note: You can assume without proof that $L_k f$ is measurable.

8. Let μ be a finite signed Borel measure on \mathbb{R} that is absolutely continuous with respect to Lebesgue measure. Assume that $A \subseteq \mathbb{R}$ is a Borel set, and for $t \in \mathbb{R}$ let $A + t = \{x + t : x \in A\}$. Prove that $f(t) = \mu(A + t)$ is continuous on \mathbb{R}.

