Algebra Comprehensive Exam Spring 2023

Student Number:	
-----------------	--

Instructions: Complete 5 of the 8 problems, and **circle** their numbers below – the uncircled problems will **not** be graded.

 $1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8$

Write **only on the front side** of the solution pages. A **complete solution** of a problem is preferable to partial progress on several problems.

- 1. Let A_n be the alternating group consisting of even permutations of $\{1, 2, \ldots, n\}$.
 - (a) Show that all 3-cycles are conjugate in A_n for $n \ge 5$.
 - (b) Are all 3 cycles conjugate in A_4 ?
- 2. Let G be a nonabelian group of order p^3 where p is a prime number.
 - (a) Show that the center Z of G is a cyclic group of order p.
 - (b) Show that the commutator subgroup of G is equal to Z. (The commutator subgroup [G, G] is the subgroup generated by elements of the form aba⁻¹b⁻¹ where a, b ∈ G.)
- 3. Show that there exists a real $n \times n$ matrix A with $A^2 = -I$ if and only if n is even.
- 4. Let K be the splitting field of $x^4 3$ over **Q**. What is the degree of K over **Q**? How many subfields are there in K (including **Q** and K itself)?
- 5. Let p be a prime number, let $q = p^n$ with $n \ge 1$ a positive integer, and let \mathbf{F}_q denote the finite field with q elements. Prove that every p-Sylow subgroup of the group $\mathrm{GL}_2(\mathbf{F}_q)$ of 2×2 invertible matrices over \mathbf{F}_q is isomorphic to $(\mathbf{Z}/p\mathbf{Z})^n$.
- 6. Suppose L/K is an algebraic field extension, and that R is a subring of L containing K. Prove that R is a field.
- 7. Find all commutative rings R with 1 such that R has a unique maximal ideal and such that the only units of R are 1 and -1.
- 8. Prove that the group $SL(2, \mathbb{Z})$ of 2×2 integer matrices with determinant 1 does not contain an element of order 5.