Probability Comprehensive Exam
Fall 2023

Student Number:

Instructions: Complete 5 of the 8 problems, and circle their numbers below — the uncircled
problems will not be graded.

Write only on the front side of the solution pages. A complete solution of a problem
is preferable to partial progress on several problems.
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1. Let X and Y be two independent and identically distributed random variables, with
finite second moment and variance equal to 1, and assume further that (X +Y)/v/2 has
the same law as X.

(a) Show that X is centered.

(b) Let Xy, X5,Y}, Y2 be independent random variables each having the same law as
X. Show that (X7 + Y7 + X5 + ¥32)/2 has also the same law as X.

(¢) By induction, generalize (b) and conclude that X is in fact a standard normal
random variable.

2. Let (X,)n>1 be a sequence of random variables and for each integer k > 1, let Fj :=
0(Xg, Xkt1,...) be the o-field generated by X, Xy41,..., and let Foo = N2, Fy.

(a) Show that limsup,,_,, . X, is Fo-measurable.

(b) Let now the random variables X,,, n > 1 be independent, and let F'(2) = Y% X,,2",
z € C. Let R be the radius of convergence of the random series F. Is R almost
surely constant?

3. (a) Let (2,G,P) be a probability space and let F; and F3 be two sub-o-fields of G, and
let F = F1V F; be the o-field generated by F; U F,. Let Y be a random variable
such that E|Y| < +o0 and let o(Y') be the o-field generated by Y. Assuming that
o(Y)V Fy and F, are independent, show that, almost surely,

E(Y[F) = E(Y|F).

(b) Let (X,)n>1 be a sequence of independent and identically distributed random vari-
ables such that E|X,,| < +oc0; and let S, = > X}. Find

E(X1|O'(Sn, Sn+1, Sn+2 e ))

4. (a) Let (X,)n>1 be a sequence of independent Rademacher random variables with pa-
rameter 0 < p < 1, p # 1/2, ie, P(X,, = —=1) = 1 —p and P(X,, = 1) = p,
p#1/2. Let S, = X1+ Xo+ -+ X,,, let A, = {S,, = 0}, and let Sy = 0. What
is P(limsup,,_,, . A,) equal to?

(b) Now consider the case of p = 1/2; that is, P(X,, = —1) = 1/2 = P(X,, = +1).
Prove that P(limsup,, . A,) = 1.
Hint. Define A™ = {limsup,,_,., S, = +oo} and first prove that P(A") > 0.
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5. Let X be a nonnegative random variable and, for z € R, let x be the positive part of
x defined as xy = max{z,0}. Show that

— 1
E(log X); < oo if and only if Z —P(X >n) < co.
n

n=1

6. Let (An)n>1 be a sequence of events that are pairwise independent. Show that if
Yo P(A,) = oo, then P(limsup,,_, ., A,) = 1.

7. Let ¢ : R — C be given by ¢(t) = 1 —sin*(¢). Is ¢ the characteristic function of a
random variable? If so, compute the distribution function of the random variable. If
not, prove that there is no such random variable.

8. Let g : [0,00) — [0,00) be a continuous, strictly increasing function such that ¢g(0) = 0.

1. Suppose that ¢ is bounded. Let (X,),>1 be a sequence of random variables, and
let X be another random variable, all defined on the same probability space. Prove
that X,, — X in probability if and only if Eg(|X,, — X|) — 0.

2. Suppose instead that g is unbounded. Show that there exist random variables (Y},)
and Y, defined on the same probability space, such that Y,, — Y in probability but
Eg(|Y, — Y|) does not converge to 0.
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