Probability Comprehensive Exam Fall 2023

Student Number: \square

Instructions: Complete 5 of the 8 problems, and circle their numbers below - the uncircled problems will not be graded.

$$
\begin{array}{llllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8
\end{array}
$$

Write only on the front side of the solution pages. A complete solution of a problem is preferable to partial progress on several problems.

1. Let X and Y be two independent and identically distributed random variables, with finite second moment and variance equal to 1 , and assume further that $(X+Y) / \sqrt{2}$ has the same law as X.
(a) Show that X is centered.
(b) Let $X_{1}, X_{2}, Y_{1}, Y_{2}$ be independent random variables each having the same law as X. Show that $\left(X_{1}+Y_{1}+X_{2}+Y_{2}\right) / 2$ has also the same law as X.
(c) By induction, generalize (b) and conclude that X is in fact a standard normal random variable.
2. Let $\left(X_{n}\right)_{n \geq 1}$ be a sequence of random variables and for each integer $k \geq 1$, let $\mathcal{F}_{k}:=$ $\sigma\left(X_{k}, X_{k+1}, \ldots\right)$ be the σ-field generated by X_{k}, X_{k+1}, \ldots, and let $\mathcal{F}_{\infty}=\cap_{k=1}^{\infty} \mathcal{F}_{k}$.
(a) Show that $\lim \sup _{n \rightarrow+\infty} X_{n}$ is \mathcal{F}_{∞}-measurable.
(b) Let now the random variables $X_{n}, n \geq 1$ be independent, and let $F(z)=\sum_{n=0}^{+\infty} X_{n} z^{n}$, $z \in \mathbb{C}$. Let R be the radius of convergence of the random series F. Is R almost surely constant?
3. (a) Let $(\Omega, \mathcal{G}, \mathbb{P})$ be a probability space and let \mathcal{F}_{1} and \mathcal{F}_{2} be two sub- σ-fields of \mathcal{G}, and let $\mathcal{F}=\mathcal{F}_{1} \vee \mathcal{F}_{2}$ be the σ-field generated by $\mathcal{F}_{1} \cup \mathcal{F}_{2}$. Let Y be a random variable such that $\mathbb{E}|Y|<+\infty$ and let $\sigma(Y)$ be the σ-field generated by Y. Assuming that $\sigma(Y) \vee \mathcal{F}_{1}$ and \mathcal{F}_{2} are independent, show that, almost surely,

$$
\mathbb{E}(Y \mid \mathcal{F})=\mathbb{E}\left(Y \mid \mathcal{F}_{1}\right)
$$

(b) Let $\left(X_{n}\right)_{n \geq 1}$ be a sequence of independent and identically distributed random variables such that $\mathbb{E}\left|X_{n}\right|<+\infty$; and let $S_{n}=\sum_{k=1}^{n} X_{k}$. Find

$$
\mathbb{E}\left(X_{1} \mid \sigma\left(S_{n}, S_{n+1}, S_{n+2} \ldots\right)\right)
$$

4. (a) Let $\left(X_{n}\right)_{n \geq 1}$ be a sequence of independent Rademacher random variables with parameter $0<p<1, p \neq 1 / 2$, i.e., $\mathbb{P}\left(X_{n}=-1\right)=1-p$ and $\mathbb{P}\left(X_{n}=1\right)=p$, $p \neq 1 / 2$. Let $S_{n}=X_{1}+X_{2}+\cdots+X_{n}$, let $A_{n}=\left\{S_{n}=0\right\}$, and let $S_{0}=0$. What is $\mathbb{P}\left(\lim \sup _{n \rightarrow+\infty} A_{n}\right)$ equal to?
(b) Now consider the case of $p=1 / 2$; that is, $\mathbb{P}\left(X_{n}=-1\right)=1 / 2=\mathbb{P}\left(X_{n}=+1\right)$. Prove that $\mathbb{P}\left(\lim \sup _{n \rightarrow \infty} A_{n}\right)=1$.
Hint. Define $A^{+}=\left\{\lim \sup _{n \rightarrow \infty} S_{n}=+\infty\right\}$ and first prove that $\mathbb{P}\left(A^{+}\right)>0$.
5. Let X be a nonnegative random variable and, for $x \in \mathbb{R}$, let x_{+}be the positive part of x defined as $x_{+}=\max \{x, 0\}$. Show that

$$
\mathbb{E}(\log X)_{+}<\infty \text { if and only if } \sum_{n=1}^{\infty} \frac{1}{n} \mathbb{P}(X>n)<\infty
$$

6. Let $\left(A_{n}\right)_{n \geq 1}$ be a sequence of events that are pairwise independent. Show that if $\sum_{n=1}^{\infty} \mathbb{P}\left(A_{n}\right)=\infty$, then $\mathbb{P}\left(\lim \sup _{n \rightarrow \infty} A_{n}\right)=1$.
7. Let $\phi: \mathbb{R} \rightarrow \mathbb{C}$ be given by $\phi(t)=1-\sin ^{4}(t)$. Is ϕ the characteristic function of a random variable? If so, compute the distribution function of the random variable. If not, prove that there is no such random variable.
8. Let $g:[0, \infty) \rightarrow[0, \infty)$ be a continuous, strictly increasing function such that $g(0)=0$.
9. Suppose that g is bounded. Let $\left(X_{n}\right)_{n \geq 1}$ be a sequence of random variables, and let X be another random variable, all defined on the same probability space. Prove that $X_{n} \rightarrow X$ in probability if and only if $\mathbb{E} g\left(\left|X_{n}-X\right|\right) \rightarrow 0$.
10. Suppose instead that g is unbounded. Show that there exist random variables $\left(Y_{n}\right)$ and Y, defined on the same probability space, such that $Y_{n} \rightarrow Y$ in probability but $\mathbb{E} g\left(\left|Y_{n}-Y\right|\right)$ does not converge to 0 .
