Probability Comprehensive Exam Fall 2023

Student Number:	
-----------------	--

Instructions: Complete 5 of the 8 problems, and **circle** their numbers below – the uncircled problems will **not** be graded.

 $1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8$

Write **only on the front side** of the solution pages. A **complete solution** of a problem is preferable to partial progress on several problems.

- 1. Let X and Y be two independent and identically distributed random variables, with finite second moment and variance equal to 1, and assume further that $(X+Y)/\sqrt{2}$ has the same law as X.
 - (a) Show that X is centered.
 - (b) Let X_1, X_2, Y_1, Y_2 be independent random variables each having the same law as X. Show that $(X_1 + Y_1 + X_2 + Y_2)/2$ has also the same law as X.
 - (c) By induction, generalize (b) and conclude that X is in fact a standard normal random variable.
- 2. Let $(X_n)_{n\geq 1}$ be a sequence of random variables and for each integer $k \geq 1$, let $\mathcal{F}_k := \sigma(X_k, X_{k+1}, \dots)$ be the σ -field generated by X_k, X_{k+1}, \dots , and let $\mathcal{F}_{\infty} = \bigcap_{k=1}^{\infty} \mathcal{F}_k$.
 - (a) Show that $\limsup_{n \to +\infty} X_n$ is \mathcal{F}_{∞} -measurable.
 - (b) Let now the random variables $X_n, n \ge 1$ be independent, and let $F(z) = \sum_{n=0}^{+\infty} X_n z^n$, $z \in \mathbb{C}$. Let R be the radius of convergence of the random series F. Is R almost surely constant?
- 3. (a) Let $(\Omega, \mathcal{G}, \mathbb{P})$ be a probability space and let \mathcal{F}_1 and \mathcal{F}_2 be two sub- σ -fields of \mathcal{G} , and let $\mathcal{F} = \mathcal{F}_1 \vee \mathcal{F}_2$ be the σ -field generated by $\mathcal{F}_1 \cup \mathcal{F}_2$. Let Y be a random variable such that $\mathbb{E}|Y| < +\infty$ and let $\sigma(Y)$ be the σ -field generated by Y. Assuming that $\sigma(Y) \vee \mathcal{F}_1$ and \mathcal{F}_2 are independent, show that, almost surely,

$$\mathbb{E}(Y|\mathcal{F}) = \mathbb{E}(Y|\mathcal{F}_1).$$

(b) Let $(X_n)_{n\geq 1}$ be a sequence of independent and identically distributed random variables such that $\mathbb{E}|X_n| < +\infty$; and let $S_n = \sum_{k=1}^n X_k$. Find

$$\mathbb{E}(X_1|\sigma(S_n, S_{n+1}, S_{n+2}\dots)).$$

- 4. (a) Let $(X_n)_{n\geq 1}$ be a sequence of independent Rademacher random variables with parameter $0 , i.e., <math>\mathbb{P}(X_n = -1) = 1 p$ and $\mathbb{P}(X_n = 1) = p$, $p \neq 1/2$. Let $S_n = X_1 + X_2 + \cdots + X_n$, let $A_n = \{S_n = 0\}$, and let $S_0 = 0$. What is $\mathbb{P}(\limsup_{n \to +\infty} A_n)$ equal to?
 - (b) Now consider the case of p = 1/2; that is, $\mathbb{P}(X_n = -1) = 1/2 = \mathbb{P}(X_n = +1)$. Prove that $\mathbb{P}(\limsup_{n\to\infty} A_n) = 1$. **Hint.** Define $A^+ = \{\limsup_{n\to\infty} S_n = +\infty\}$ and first prove that $\mathbb{P}(A^+) > 0$.

5. Let X be a nonnegative random variable and, for $x \in \mathbb{R}$, let x_+ be the positive part of x defined as $x_+ = \max\{x, 0\}$. Show that

$$\mathbb{E}(\log X)_+ < \infty$$
 if and only if $\sum_{n=1}^{\infty} \frac{1}{n} \mathbb{P}(X > n) < \infty$.

- 6. Let $(A_n)_{n\geq 1}$ be a sequence of events that are pairwise independent. Show that if $\sum_{n=1}^{\infty} \mathbb{P}(A_n) = \infty$, then $\mathbb{P}(\limsup_{n\to\infty} A_n) = 1$.
- 7. Let $\phi : \mathbb{R} \to \mathbb{C}$ be given by $\phi(t) = 1 \sin^4(t)$. Is ϕ the characteristic function of a random variable? If so, compute the distribution function of the random variable. If not, prove that there is no such random variable.
- 8. Let $g: [0,\infty) \to [0,\infty)$ be a continuous, strictly increasing function such that g(0) = 0.
 - 1. Suppose that g is bounded. Let $(X_n)_{n\geq 1}$ be a sequence of random variables, and let X be another random variable, all defined on the same probability space. Prove that $X_n \to X$ in probability if and only if $\mathbb{E}g(|X_n X|) \to 0$.
 - 2. Suppose instead that g is unbounded. Show that there exist random variables (Y_n) and Y, defined on the same probability space, such that $Y_n \to Y$ in probability but $\mathbb{E}g(|Y_n Y|)$ does not converge to 0.