Discrete Mathematics Comprehensive Exam
 Fall 2023

Student Number:

Instructions: Complete exactly 5 of the given 6 problems and circle their numbers below. The uncircled problems will not be graded.

1	2	3	4	5	6

Write only on the front side of the solution pages. A complete solution of a problem is preferable to partial progress on several problems.

1. Let \mathcal{B} be a basis of the cycle space of $G \cong K_{3,3}$. Show that there is an edge of G contained in at least 3 members of \mathcal{B}.
2. A graph G is degree-choosable if for every family of sets $\left(S_{v}\right)_{v \in V(G)}$ such that $\left|S_{v}\right| \geqslant d_{G}(v)$ for all $v \in \mathrm{~V}(\mathrm{G}), \mathrm{G}$ has a proper vertex-coloring c with $\mathrm{c}(v) \in \mathrm{S}_{v}$ for all $v \in \mathrm{~V}(\mathrm{G})$.
Let G be a connected graph and let H be a connected induced subgraph of G. Suppose H is degree-choosable. Prove that G is also degree-choosable.
3. Let H be the graph obtained from $\mathrm{K}_{1,3}$ by subdividing one edge. Let G be a connected graph that has no induced subgraph isomorphic to H. Let v be a vertex of G , and let G_{v} denote the subgraph of G induced by all vertices of distance at least 3 from v. Show that $\Delta\left(G_{v}\right)<R(3, \omega(G)+1)$. (Here $\omega(G)$ is the clique number of G, and $R(s, t)$ denotes the Ramsey number for independent set of size s and clique of order t.)
4. Let G be a graph with n vertices and m edges. We say that an edge $e \in E(G)$ is ε-light if it belongs to at most $\varepsilon \boldsymbol{n}$ triangles in G. Pick a vertex $w \in \mathrm{~V}(\mathrm{G})$ uniformly at random and let $\mathrm{U}:=\mathrm{N}_{\mathrm{G}}(w)$. Let X be the random variable equal to the number of ε-light edges with both endpoints in U. Show that $\mathbb{E}[X] \leqslant \varepsilon m$.
5. Let \mathcal{F} be a family of subsets of $[n]$ such that $|\mathcal{F}| \leqslant n^{d}$, where n and d are positive integers. Show that if $|A| \leqslant n^{1 / 2}$ for all $A \in \mathcal{F}$, then there exists a subset $X \subseteq[n]$ of size $|X| \geqslant n^{1 / 3}$ such that $|X \cap A| \leqslant 10 d$ for all $A \in \mathcal{F}$.
6. A 3-term arithmetic progression, or a 3-AP for short, is a set of the form $\{a, a+d, a+2 d\}$, where $a \in \mathbf{R}$ and $d>0$. A set $S \subseteq \mathbf{R}$ is 3-AP-free if it does not contain a 3-AP.
Fix a constant $\mathrm{c}>0$. Let $\mathrm{n} \in \mathbf{N}$ and form a subset $\mathrm{S} \subseteq[\mathrm{n}]$ by including each element independently with probability $p=\mathrm{cn}^{-2 / 3}$. Compute the following limit:

$$
\lim _{n \rightarrow \infty} \mathbb{P}[S \text { is 3-AP-free]. }
$$

