Discrete Mathematics Comprehensive Exam Fall 2023

Student Number:	

Instructions: Complete **exactly 5** of the given 6 problems and **circle** their numbers below. The uncircled problems will **not** be graded.

1 2 3 4 5 6

Write **only on the front side** of the solution pages. A **complete solution** of a problem is preferable to partial progress on several problems.

- 1. Let \mathcal{B} be a basis of the cycle space of $G \cong K_{3,3}$. Show that there is an edge of G contained in at least 3 members of \mathcal{B} .
- 2. A graph G is *degree-choosable* if for every family of sets $(S_{\nu})_{\nu \in V(G)}$ such that $|S_{\nu}| \geqslant d_G(\nu)$ for all $\nu \in V(G)$, G has a proper vertex-coloring c with $c(\nu) \in S_{\nu}$ for all $\nu \in V(G)$.
 - Let G be a connected graph and let H be a connected induced subgraph of G. Suppose H is degree-choosable. Prove that G is also degree-choosable.
- 3. Let H be the graph obtained from $K_{1,3}$ by subdividing one edge. Let G be a connected graph that has no induced subgraph isomorphic to H. Let ν be a vertex of G, and let G_{ν} denote the subgraph of G induced by all vertices of distance at least 3 from ν . Show that $\Delta(G_{\nu}) < R(3, \omega(G) + 1)$. (Here $\omega(G)$ is the clique number of G, and R(s,t) denotes the Ramsey number for independent set of size s and clique of order t.)
- 4. Let G be a graph with n vertices and m edges. We say that an edge $e \in E(G)$ is ϵ -light if it belongs to at most ϵ n triangles in G. Pick a vertex $w \in V(G)$ uniformly at random and let $U := N_G(w)$. Let X be the random variable equal to the number of ϵ -light edges with both endpoints in U. Show that $\mathbb{E}[X] \leq \epsilon m$.
- 5. Let \mathcal{F} be a family of subsets of [n] such that $|\mathcal{F}| \leqslant n^d$, where n and d are positive integers. Show that if $|A| \leqslant n^{1/2}$ for all $A \in \mathcal{F}$, then there exists a subset $X \subseteq [n]$ of size $|X| \geqslant n^{1/3}$ such that $|X \cap A| \leqslant 10d$ for all $A \in \mathcal{F}$.
- 6. A 3-term arithmetic progression, or a 3-AP for short, is a set of the form $\{a, a+d, a+2d\}$, where $a \in \mathbf{R}$ and d > 0. A set $S \subseteq \mathbf{R}$ is 3-AP-free if it does not contain a 3-AP.

Fix a constant c>0. Let $n\in \mathbb{N}$ and form a subset $S\subseteq [n]$ by including each element independently with probability $p=cn^{-2/3}$. Compute the following limit:

 $\lim_{n\to\infty} \mathbb{P}[S \text{ is } 3\text{-AP-free}].$

School of Mathematics Georgia Tech