Analysis Comprehensive Exam
Fall 2023

Student Number:

Instructions: Complete 5 of the 8 problems, and circle their numbers below — the uncircled
problems will not be graded.

Write only on the front side of the solution pages. A complete solution of a problem
is preferable to partial progress on several problems.

School of Math Georgia Tech



Analysis Comp Fall 2023

1. Let f, : [0,1] — R be absolutely continuous functions, and let f : [0,1] — R be
measurable. Assume that V[f, — f] = 0 as n — oo. (Here V[f] denotes the total
variation of f over [0, 1]).

(a) Prove that f is absolutely continuous.

(b) Prove that there exist constants ¢, € R so that the functions g,(z) = f.(x) + ¢,
converge to f uniformly.

(c¢) Does there necessarily exist a constant ¢ € R so that the functions g,(z) = f.(z)+c
converge to f uniformly?

2. The two parts of this question are unrelated, or related only in concept. Let f € L'(R).

(a) Prove that f(n?zr) — 0 for almost every = € R.

(b) Prove that if f : R — R is absolutely continuous, and f’ € L'(R) then f(z) — 0
as |z| — oo. Is the condition f’ € L*(R) necessarily for this conclusion?

3. Let (X, d) be a metric space, and A C X. Assume that every function f : A — R that
is continuous, is uniformly continuous. Show that A is closed.

4. Let X be a Banach space, Y be a normed linear space, and B : X XY +— R be a bilinear
function (that is, it is linear in each of its two variables). Suppose that for each = € X
there exists a constant C'(z) > 0 such that

|B(z,y)| < C@)[lyl  VyeYy,
and for each y €Y, there exists C(y) > 0 such that
|B(z,y)| < Cy)llz]|  VoeX.
Show that then there exists a constant C' > 0 such that
|B(x,y)| < Cllz||[lyll
forallz € X and ally € Y.

5. Let EZ C R be a set of finite positive Lebesgue measure. Let f, : E — R for n > 1, and
f + E — R be Lebesgue measurable. Prove that f, — f in measure on E' iff

lim e~ V@ —=fu(@)l 1 — 0.

n—oo E

(We define e=1/0 = 0).
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6. Assume that p is a finite positive measure on X. Let f be a real valued u—measurable
function on the measure space (X, M, uu). Prove that

lim [ cos™(nf(x))du(x) = p{z: f(z) € Z} = p(f(2)).

n—oo X

7. Construct a function f : [0,1] x [0,1] — R such that for each = € [0,1], f (z,-) and
f (-, z) are integrable over [0, 1], and

/Ol{Alf(x,y)dx]dyand/ {/fxydy}

are finite, but f is not Lebesgue integrable over [0, 1] x [0, 1].

8. Consider the set

o = {f€L3(R):/]R|f\2<oo}.

Prove that 2l is an F, set (that is, a countable union of closed sets) in L3(R).
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