Analysis Comprehensive Exam Fall 2023

Student Number:

Instructions: Complete 5 of the 8 problems, and circle their numbers below - the uncircled problems will not be graded.

Write only on the front side of the solution pages. A complete solution of a problem is preferable to partial progress on several problems.

1. Let $f_{n}:[0,1] \rightarrow \mathbb{R}$ be absolutely continuous functions, and let $f:[0,1] \rightarrow \mathbb{R}$ be measurable. Assume that $V\left[f_{n}-f\right] \rightarrow 0$ as $n \rightarrow \infty$. (Here $V[f]$ denotes the total variation of f over $[0,1]$).
(a) Prove that f is absolutely continuous.
(b) Prove that there exist constants $c_{n} \in \mathbb{R}$ so that the functions $g_{n}(x)=f_{n}(x)+c_{n}$ converge to f uniformly.
(c) Does there necessarily exist a constant $c \in \mathbb{R}$ so that the functions $g_{n}(x)=f_{n}(x)+c$ converge to f uniformly?
2. The two parts of this question are unrelated, or related only in concept. Let $f \in L^{1}(\mathbb{R})$.
(a) Prove that $f\left(n^{2} x\right) \rightarrow 0$ for almost every $x \in \mathbb{R}$.
(b) Prove that if $f: \mathbb{R} \rightarrow \mathbb{R}$ is absolutely continuous, and $f^{\prime} \in L^{1}(\mathbb{R})$ then $f(x) \rightarrow 0$ as $|x| \rightarrow \infty$. Is the condition $f^{\prime} \in L^{1}(\mathbb{R})$ necessarily for this conclusion?
3. Let (X, d) be a metric space, and $A \subset X$. Assume that every function $f: A \rightarrow \mathbb{R}$ that is continuous, is uniformly continuous. Show that A is closed.
4. Let X be a Banach space, Y be a normed linear space, and $B: X \times Y \mapsto \mathbb{R}$ be a bilinear function (that is, it is linear in each of its two variables). Suppose that for each $x \in X$ there exists a constant $C(x) \geq 0$ such that

$$
|B(x, y)| \leq C(x)\|y\| \quad \forall y \in Y
$$

and for each $y \in Y$, there exists $C(y) \geq 0$ such that

$$
|B(x, y)| \leq C(y)\|x\| \quad \forall x \in X
$$

Show that then there exists a constant $C \geq 0$ such that

$$
|B(x, y)| \leq C\|x\|\|y\|
$$

for all $x \in X$ and all $y \in Y$.
5. Let $E \subset \mathbb{R}$ be a set of finite positive Lebesgue measure. Let $f_{n}: E \rightarrow \mathbb{R}$ for $n \geq 1$, and $f: E \rightarrow \mathbb{R}$ be Lebesgue measurable. Prove that $f_{n} \rightarrow f$ in measure on E iff

$$
\lim _{n \rightarrow \infty} \int_{E} e^{-1 /\left|f(x)-f_{n}(x)\right|} d x=0
$$

(We define $e^{-1 / 0}=0$).
6. Assume that μ is a finite positive measure on X. Let f be a real valued μ-measurable function on the measure space (X, \mathcal{M}, μ). Prove that

$$
\lim _{n \rightarrow \infty} \int_{X} \cos ^{2 n}(\pi f(x)) d \mu(x)=\mu\{x: f(x) \in \mathbb{Z}\}=\mu\left(f^{-1}(\mathbb{Z})\right)
$$

7. Construct a function $f:[0,1] \times[0,1] \rightarrow \mathbb{R}$ such that for each $x \in[0,1], f(x, \cdot)$ and $f(\cdot, x)$ are integrable over $[0,1]$, and

$$
\int_{0}^{1}\left[\int_{0}^{1} f(x, y) d x\right] d y \text { and } \int_{0}^{1}\left[\int_{0}^{1} f(x, y) d y\right] d x
$$

are finite, but f is not Lebesgue integrable over $[0,1] \times[0,1]$.
8. Consider the set

$$
\mathfrak{A}:=\left\{f \in L^{3}(\mathbb{R}): \int_{\mathbb{R}}|f|^{2}<\infty\right\} .
$$

Prove that \mathfrak{A} is an F_{σ} set (that is, a countable union of closed sets) in $L^{3}(\mathbb{R})$.

