Algebra Comprehensive Exam Fall 2023

Student Number: \square

Instructions: Complete 5 of the 8 problems, and circle their numbers below - the uncircled problems will not be graded.

$$
\begin{array}{llllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8
\end{array}
$$

Write only on the front side of the solution pages. A complete solution of a problem is preferable to partial progress on several problems.

1. Let $R=\mathbb{Z} / 1805 \mathbb{Z}$. How many elements $x \in R$ satisfy $x^{19}=1$? [Note that $1805=5 \cdot 19^{2}$.]
2. Show that every group of order $99=3^{2} \cdot 11$ is abelian.
3. Let A be an invertible real symmetric matrix. Suppose that there exists a constant C such that for all integer k we have $\left|\operatorname{Trace}\left(A^{k}\right)\right|<C$. Show that A^{2} must be the identity matrix.
4. Let A and B be principal ideal domains such that $A \subseteq B$. Suppose that p and q are relatively prime elements in A. Show that p and q are also relatively prime in B. (Recall that two elements are called relatively prime if the only elements dividing both are units).
5. If K is a finite extension of a field F of characteristic $p>0$ and $\alpha \in K$ satisfies $F(\alpha)=F\left(\alpha^{p}\right)$, show that the minimal polynomial of α over F is separable.
6. Find the degree of a splitting field for $f(x)=x^{3}-7$ over $K=\mathbf{Q}(\sqrt{-3})$.
7. Let ζ be a primitive 37 th root of unity, and let $\eta=\zeta+\zeta^{10}+\zeta^{26}$. Determine the Galois group of $\mathbf{Q}(\eta)$ over \mathbf{Q}.
8. Let N be an R-submodule of the R-module M. Prove that if both N and M / N are finitely generated R-modules, then so is M.
