
Topology Comprehensive Exam

Spring 2022

Student Number:

Instructions: Complete 5 of the 8 problems, and circle their numbers below – the uncircled
problems will not be graded.

1 2 3 4 5 6 7 8

Write only on the front side of the solution pages. A complete solution of a problem
is preferable to partial progress on several problems.
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1. Show there is no smooth surjection from R1 to R2.

2. Let ω1, . . . , ωk be 1-forms on some open set U ⊆ Rn such that (ω1)p, . . . , (ωk)p are linearly
independent at each point p ∈ U . Suppose that there are 1-forms α1, . . . , αk such that

k∑
i=1

ωi ∧ αi = 0.

Show each of the αi is a linear combination of the ωi.

Hint. Recall, 1-forms β1, . . . , βk are linearly dependent if and only if β1 ∧ . . . ,∧βk = 0.
What happens when you wedge the formula above with ω1 ∧ . . . ∧ ω̂i ∧ . . . ∧ ωk? (Here
the hat means the term is omitted.)

3. Show that no two of the following spaces are homeomorphic: R,R2, and R3.

4. Consider the differential form λ = x1 ∧ dx2 + x3 ∧ dx4 on R4.

1. Compute dλ.

2. Show that there is no diffeomorphism φ : R4 → R4 that satisfies φ∗dλ = dλ and
that takes the unit sphere in R4 to a sphere of radius r 6= 1.

Hint. Consider dλ ∧ dλ.

5. Consider the torus T = S1 × S1.

1. Let C = S1×{p} for some point p ∈ S1. State the definition of intersection number
mod 2 of a function f : S1 → T with C, and show there is a map f : S1 → T such
that the intersection number of its image with C is 1.

2. Show that the map f you found in Part 1 is not homotopic to a constant map.

6. Consider the subset X of R2 which is the union of the following subsets:

• the x-axis

• the y-axis

• the line y = x

• the semicircle given by x2 + y2 = 1, x ≥ 0.

Describe the fundamental group of X in terms of generators and relations. Draw a
picture of a connected 2-fold cover of X
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7. Show that any continuous map from the real projective plane RP 2 to the torus T =
S1 × S1 must be homotopic to a constant map.

8. Let In be the n×n identity matrix and let J =

(
0 In
−In 0

)
be a 2n× 2n matrix. Define

Sp(2n) to be the set of all real 2n × 2n matrices A that satisfy ATJA = J (here AT is
the transpose of A). Show that Sp(2n) is a manifold and compute its dimension.

Hint. consider the map A 7→ ATJA from the set of 2n×2n matrices to the set of 2n×2n
skew-symmetric matrices.
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