Probability Comprehensive Exam Fall 2022

Student Number:	
-----------------	--

Instructions: Complete 5 of the 8 problems, and **circle** their numbers below – the uncircled problems will **not** be graded.

 $1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8$

Write **only on the front side** of the solution pages. A **complete solution** of a problem is preferable to partial progress on several problems.

$$\overline{\mathcal{D}} = \limsup_{n \to \infty} \frac{1}{n} \# \{k = 1, \dots, n : A_k \text{ occurs}\} \text{ and}$$
$$\underline{\mathcal{D}} = \liminf_{n \to \infty} \frac{1}{n} \# \{k = 1, \dots, n : A_k \text{ occurs}\}.$$

Show that for any a < 1/2, we have $\mathbb{P}(\overline{D} \ge a) > 0$, but that there exist sequences (A_n) with $\underline{D} = 0$ a.s.

- 2. Let X_1, \ldots, X_n be random variables that are symmetric; that is, for any $k = 1, \ldots, n$, both X_k and $-X_k$ have the same distribution. Show that if the X_k are independent, then the variable $S_n = X_1 + \cdots + X_n$ is symmetric, but if the X_k are not independent, then S_n need not be symmetric.
- 3. Let X_1, X_2, \ldots , be i.i.d. standard normal random variables. For $n \ge 1$, set $S_n = X_1 + \cdots + X_n$ and $R_n = S_1 + \cdots + S_n$. Prove that

 $\mathbb{P}(R_n \in [-1, 1] \text{ for infinitely many } n) = 0.$

4. Let X_1, X_2, \ldots be a sequence of i.i.d. random variables with $\mathbb{E}X_k = 0$ and such that $\mathbb{P}(X_k \in [-1, 1] \setminus \{0\}) = 1$. Prove that

$$\limsup_{n \to \infty} \frac{X_1 + \dots + X_n}{\sqrt{X_1^4 + \dots + X_n^4}} = +\infty \text{ almost surely.}$$

- 5. Let X and Y be two identically distributed random variables defined on $(\Omega, \mathcal{F}, \mathbb{P})$ such that $\mathbb{E}(X Y)_+ < +\infty$, where $x_+ = \max\{x, 0\}$. Show that $\mathbb{E}(X Y) = 0$.
- 6. Let X be such that $\mathbb{E}|X| < \infty$, and let \mathcal{F} be a sigma-field. Let \mathcal{G} be a sigma-field that is independent of $\sigma(\sigma(X), \mathcal{F})$. Show that

$$\mathbb{E}[X \mid \sigma(\mathcal{F}, \mathcal{G})] = \mathbb{E}[X \mid \mathcal{F}].$$

In particular, if X is independent of \mathcal{G} , then $\mathbb{E}[X \mid \mathcal{G}] = \mathbb{E}X$.

7. Let (X_n) be a sequence of i.i.d. random variables with exponential distribution of parameter 1. For each $n \ge 1$, let $M_n = \max\{X_1, \ldots, X_n\}$. Show that there exists c > 0 such that

Var
$$M_n \geq c$$
 for all large n .

8. Let (X_n) be a sequence i.i.d. random variables that are uniformly distributed on $\{0, \ldots, 6\}$. Prove that $\sum_{n=1}^{\infty} X_n 7^{-n}$ converges a.s. to a random variable with uniform distribution on [0, 1].