Student Number:

Instructions: Complete 5 of the 8 problems, and circle their numbers below – the uncircled problems will not be graded.

1 2 3 4 5 6 7 8

Write only on the front side of the solution pages. A complete solution of a problem is preferable to partial progress on several problems.
1. Suppose that \(f : M \to N \) is a smooth map from a compact non-empty manifold \(M \) to a connected manifold \(N \). If \(df_x \) is invertible for all \(x \in M \) then show that \(f \) is surjective.

2. Let \(K \) be a submanifold of \(\mathbb{R}^3 \) diffeomorphic to the circle. For every \(\epsilon > 0 \) show there is a vector \(v \in \mathbb{R}^3 \) with length less than \(\epsilon \) such that \(K \) and \(K + v = \{ x + v : x \in K \} \) are disjoint.

3. Let \(X = \mathbb{R}P^2 \times \mathbb{R}P^2 \). Describe the universal cover of \(X \). Describe all other covers of \(X \) as quotients of the universal cover.

4. Let \(f : \mathbb{R}^3 \to \mathbb{R}^2 \) be given by \(f(x, y, z) = (x, yz) \). Let \(\omega = \sin x \, dy \) be a 1-form on \(\mathbb{R}^2 \). Compute the pull-back \(f^* \omega \), its exterior derivative \(df^* \omega \), and the Lie derivative \(L_v f^* \omega \) in the direction \(v = \frac{\partial}{\partial x} \).

5. Let \(S \) be a smooth compact connected subsurface of \(\mathbb{R}^3 \). Show there is a plane in \(\mathbb{R}^3 \) that intersects \(S \) in a non-empty union of circles.
 Hint: Consider a projection to a coordinate axis.

6. Suppose that \(X \) and \(Y \) are homotopy equivalent CW complexes. Show that the universal covers of \(X \) and \(Y \) are homotopy equivalent.

7. Let \(S^1 = \{ (x, y) \in \mathbb{R}^2 : x^2 + y^2 = 1 \} \) and \(f : \mathbb{R} \to S^1 \) be the function given by \(f(t) = (\cos 2\pi t, \sin 2\pi t) \), where \(t \) is the coordinate on \(\mathbb{R} \). Show there is a unique 1-form \(\omega \) on \(S^1 \) such that \(f^* \omega = dt \). Show that \(\omega \) is closed but not exact.

8. Let \(K \) denote the Klein bottle, let \(f : \partial D^2 \to K \) be an injective map whose image is the curve \(b \) in \(K \) (see the figure). Let \(X \) be the space \(K \bigsqcup_f D^2 \), that is, the space obtained from \(K \) by attaching a disk \(D^2 \) according to \(f \). Compute the fundamental group of \(X \). Show that \(X \) is homotopy equivalent to a surface. Determine the surface.