

Math 1553 Worksheet: Fundamentals, §1.1, and beginning §1.2

1.
 - a) (Warm-up) Draw the set of all points in \mathbf{R}^2 that satisfy the equation $x - 2y = 0$, where we use (x, y) to denote points in \mathbf{R}^2 .
 - b) Draw the set of all points in \mathbf{R}^3 that satisfy the equation $x - 2y = 0$, where we use (x, y, z) to denote points in \mathbf{R}^3 . Geometrically, does this set form a line, a plane, or something else?
2. Richard Straker has seven light switches in order along a wall. He records which lights are on and which lights are off. To save time, he uses 0 to represent “off” and using 1 to represent “on” for each light.
 - a) Write an element of \mathbf{R}^n (for some n) that represents the situation when the last three lights are on, and the first four are off. What is n ?
 - b) Repeat part (a) when the first three lights are on and the rest are off.

3. Find all values of h so that the lines $x + hy = -5$ and $2x - 8y = 6$ do *not* intersect, and indicate what this means for the set of solutions to the linear system of equations

$$\begin{aligned}x + hy &= -5 \\2x - 8y &= 6.\end{aligned}$$

For all h so that the lines do not intersect, draw the line $x + hy = -5$ and the line $2x - 8y = 6$ to verify that they do not intersect.

4. Consider the following three planes, where we use (x, y, z) to denote points in \mathbf{R}^3 :

$$\begin{aligned}2x + 4y + 4z &= 1 \\2x + 5y + 2z &= -1 \\y + 3z &= 8\end{aligned}$$

Determine if all three of the planes intersect. If so, do they intersect at a single point, a line, or a plane?