

Section 1.2

Row Reduction

Review from 1.1: Solving Systems of Equations

Example

Solve the system of equations

$$\begin{aligned}x + 2y + 3z &= 6 \\2x - 3y + 2z &= 14 \\3x + y - z &= -2\end{aligned}$$

This is the kind of problem we'll talk about for the first half of the course.

- ▶ A **solution** is a list of numbers x, y, z, \dots that makes *all* of the equations true.
- ▶ The **solution set** is the collection of all solutions.
- ▶ **Solving** the system means finding the solution set in a “parameterized” form.

Definition

A system of equations is called **inconsistent** if it has no solution. It is **consistent** otherwise.

What is a *systematic* way to solve a system of equations?

Review from 1.1: Solving Systems of Equations

Example

Solve the system of equations

$$\begin{aligned}x + 2y + 3z &= 6 \\2x - 3y + 2z &= 14 \\3x + y - z &= -2\end{aligned}$$

What strategies do you know?

Example

Solve the system of equations

$$\begin{aligned}x + 2y + 3z &= 6 \\2x - 3y + 2z &= 14 \\3x + y - z &= -2\end{aligned}$$

Elimination method: in what ways can you manipulate the equations?

- ▶ Multiply an equation by a nonzero number. (scale)
- ▶ Add a multiple of one equation to another. (replacement)
- ▶ Swap two equations. (swap)

Solving Systems of Equations

Better notation

It sure is a pain to have to write x, y, z , and $=$ over and over again.

Matrix notation: write just the numbers, in a box, instead!

$$\begin{array}{l} x + 2y + 3z = 6 \\ 2x - 3y + 2z = 14 \\ 3x + y - z = -2 \end{array} \xrightarrow{\text{becomes}} \left(\begin{array}{ccc|c} 1 & 2 & 3 & 6 \\ 2 & -3 & 2 & 14 \\ 3 & 1 & -1 & -2 \end{array} \right)$$

This is called an **(augmented) matrix**. Our equation manipulations become **elementary row operations**:

- ▶ Multiply all entries in a row by a nonzero number. (scale)
- ▶ Add a multiple of each entry of one row to the corresponding entry in another. (row replacement)
- ▶ Swap two rows. (swap)

Row Equivalence

Important

The process of doing row operations to a matrix does not change the solution set of the corresponding linear equations!

Definition

Two matrices are called **row equivalent** if one can be obtained from the other by doing some number of elementary row operations.

So the linear equations of row-equivalent matrices have the *same solution set*.

Row Operations, **Fundamental Example**

Example

Solve the system of equations

$$\begin{aligned}x + 2y + 3z &= 6 \\2x - 3y + 2z &= 14 \\3x + y - z &= -2\end{aligned}$$

Start:

$$\left(\begin{array}{ccc|c} 1 & 2 & 3 & 6 \\ 2 & -3 & 2 & 14 \\ 3 & 1 & -1 & -2 \end{array} \right)$$

Goal: we want our elimination method to eventually produce a system of equations like

$$x = A$$

$$y = B \quad \text{or in matrix form,}$$

$$z = C$$

So we need to do row operations that make the start matrix look like the end one.

Strategy (preliminary): fiddle with it so we only have ones and zeros. [\[animated\]](#)

Row Operations

Continued

$$\left(\begin{array}{ccc|c} 1 & 2 & 3 & 6 \\ 2 & -3 & 2 & 14 \\ 3 & 1 & -1 & -2 \end{array} \right)$$

We want these to be zero.

So we subtract multiples of the first row.

$$R_2 = R_2 - 2R_1 \quad \xrightarrow{\text{~~~~~}}$$

$$\left(\begin{array}{ccc|c} 1 & 2 & 3 & 6 \\ 0 & -7 & -4 & 2 \\ 3 & 1 & -1 & -2 \end{array} \right)$$

$$R_3 = R_3 - 3R_1 \quad \xrightarrow{\text{~~~~~}}$$

$$\left(\begin{array}{ccc|c} 1 & 2 & 3 & 6 \\ 0 & -7 & -4 & 2 \\ 0 & -5 & -10 & -20 \end{array} \right)$$

$$\left(\begin{array}{ccc|c} 1 & 2 & 3 & 6 \\ 0 & -7 & -4 & 2 \\ 0 & -5 & -10 & -20 \end{array} \right)$$

$$R_2 \longleftrightarrow R_3 \quad \xrightarrow{\text{~~~~~}}$$

$$\left(\begin{array}{ccc|c} 1 & 2 & 3 & 6 \\ 0 & -5 & -10 & -20 \\ 0 & -7 & -4 & 2 \end{array} \right)$$

$$R_2 = R_2 \div -5 \quad \xrightarrow{\text{~~~~~}}$$

$$\left(\begin{array}{ccc|c} 1 & 2 & 3 & 6 \\ 0 & 1 & 2 & 4 \\ 0 & -7 & -4 & 2 \end{array} \right)$$

$$R_3 = R_3 + 7R_2 \quad \xrightarrow{\text{~~~~~}}$$

$$\left(\begin{array}{ccc|c} 1 & 2 & 3 & 6 \\ 0 & 1 & 2 & 4 \\ 0 & 0 & 10 & 30 \end{array} \right)$$

We want these to be zero.

It would be nice if this were a 1.
We could divide by -7 , but that
would produce ugly fractions.

Let's swap the last two rows first.

Row Operations

Continued

$$\left(\begin{array}{ccc|c} 1 & 2 & 3 & 6 \\ 0 & 1 & 2 & 4 \\ 0 & 0 & 10 & 30 \end{array} \right)$$

$$R_3 = R_3 \div 10 \rightarrow$$

$$\left(\begin{array}{ccc|c} 1 & 2 & 3 & 6 \\ 0 & 1 & 2 & 4 \\ 0 & 0 & 1 & 3 \end{array} \right)$$

We want these to be zero. $\rightarrow R_2 = R_2 - 2R_3, R_1 = R_1 - 3R_3$

Let's make this a 1 first.

$$R_1 = R_1 - 2R_2 \rightarrow$$

$$\left(\begin{array}{ccc|c} 1 & 2 & 0 & -3 \\ 0 & 1 & 0 & -2 \\ 0 & 0 & 1 & 3 \end{array} \right)$$

translates into \rightarrow

$$\begin{array}{rcl} x & = & 1 \\ y & = & -2 \\ z & = & 3 \end{array}$$

Success!

Check:

$$x + 2y + 3z = 6$$

substitute solution \rightarrow

$$1 + 2 \cdot (-2) + 3 \cdot 3 = 6$$

$$2x - 3y + 2z = 14$$

$$2 \cdot 1 - 3 \cdot (-2) + 2 \cdot 3 = 14$$

$$3x + y - z = -2$$

$$3 \cdot 1 + (-2) - 3 = -2$$

Row Echelon Form

Let's come up with an *algorithm* for turning an arbitrary matrix into a "solved" matrix. What do we mean by "solved"?

A matrix is in **row echelon form** if

1. All zero rows are at the bottom.
2. Each leading nonzero entry of a row is to the *right* of the leading entry of the row above.
3. Below a leading entry of a row, all entries are *zero*.

Picture:

$$\left(\begin{array}{ccccc} \star & * & * & * & * \\ 0 & \star & * & * & * \\ 0 & 0 & 0 & \star & * \\ 0 & 0 & 0 & 0 & 0 \end{array} \right) \quad \begin{array}{l} \star = \text{any number} \\ \star = \text{any nonzero number} \end{array}$$

Definition

A **pivot** \star is the first nonzero entry of a row of a matrix in row echelon form.
A **pivot column** is a column containing a pivot of a matrix in row echelon form.

Reduced Row Echelon Form

A matrix is in **reduced row echelon form** if it is in row echelon form, and in addition,

4. The pivot in each nonzero row is equal to 1.
5. Each pivot is the only nonzero entry in its column.

Picture:

$$\begin{pmatrix} 1 & 0 & * & 0 & * \\ 0 & 1 & * & 0 & * \\ 0 & 0 & 0 & 1 & * \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix} \quad \begin{array}{l} * = \text{any number} \\ 1 = \text{pivot} \end{array}$$

Note: Echelon forms do not care whether or not a column is augmented. Just ignore the vertical line.

Question

Can every matrix be put into reduced row echelon form only using row operations?

Answer: Yes!

Reduced Row Echelon Form

Continued

Why is this the “solved” version of the matrix from the fundamental example?

$$\left(\begin{array}{ccc|c} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & -2 \\ 0 & 0 & 1 & 3 \end{array} \right)$$

It translates into

which is clearly the solution.

But what happens if there are fewer pivots than rows?

$$\left(\begin{array}{ccc|c} 1 & 2 & 0 & 1 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 0 \end{array} \right)$$

... parametrized solution set (later).

An Inconsistent Example

Example

Solve the system of equations

$$\begin{array}{l} x + y = 2 \\ 3x + 4y = 5 \\ 4x + 5y = 9 \end{array}$$

Let's try doing row operations: [\[interactive row reducer\]](#)

First clear these by
subtracting multiples
of the first row.

$$\left(\begin{array}{ccc|c} 1 & 1 & 2 \\ 3 & 4 & 5 \\ 4 & 5 & 9 \end{array} \right)$$

Now clear this by
subtracting
the second row.

$$\left(\begin{array}{ccc|c} 1 & 1 & 2 \\ 0 & 1 & -1 \\ 0 & 1 & 1 \end{array} \right)$$

Poll

Which of the following matrices are in reduced row echelon form?

Extra example 1

Translate the equation to an augmented matrix and put the matrix in RREF.
Label all pivots. Feel free to use the [▶ Interactive Row Reducer](#).

$$x_1 + 2x_2 + 2x_3 - x_4 = 4$$

$$2x_1 + 4x_2 + x_3 - 2x_4 = -1$$

$$-x_1 - 2x_2 - x_3 + x_4 = -1$$

Extra example 2

Translate the equation to an augmented matrix and put the matrix in RREF.
Label all pivots. Feel free to use the [▶ Interactive Row Reducer](#).

$$x_3 + 3x_4 = 7$$

$$2x_1 - 6x_3 - 6x_4 = -6$$

$$4x_1 - 9x_3 - 3x_4 + x_5 = 8.$$

Summary

- ▶ We can more easily do elimination with matrices. The allowable moves are row swaps, row scales, and row replacements. This is called row reduction.
- ▶ A matrix in row echelon form corresponds to a system of linear equations that we can easily solve by back substitution.
- ▶ A matrix in reduced row echelon form corresponds to a system of linear equations that we can easily solve just by looking.
- ▶ We have an algorithm for row reducing a matrix to reduced row echelon form.
- ▶ The reduced row echelon form of a matrix is unique.
- ▶ Two matrices that differ by row operations are called row equivalent. Row-equivalent systems have the *same solution set*.
- ▶ A system of equations is inconsistent **exactly** when the corresponding augmented matrix has a pivot in the last column.