
Math 1553 Worksheet §5.4-5.6

1. True or false. Justify your answer.

a) A 3× 3 matrix A can have a non-real complex eigenvalue with multiplicity 2.

b) It is possible for a 2× 2 stochastic matrix to have −i/2 as an eigenvalue.

Solution.

a) No. If c is a (non-real) complex eigenvalue with multiplicity 2, then its conju-

gate c is an eigenvalue with multiplicity 2 since complex eigenvalues always

occur in conjugate pairs. This would mean A has a characteristic polynomial

of degree 4 or more, which is impossible since A is 3× 3.

b) No. The matrix must have λ = 1 as an eigenvalue since it is stochastic, but if

λ = −i/2 is an eigenvalue then so is λ= i/2, which is impossible since a 2×2

matrix cannot have more than two eigenvalues.
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Solution.

We are given diagonalization of A, which gives us the eigenvalues and eigenvectors.
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As n gets very large, the entries in the second vector above approach zero, so A
n
x

approaches


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. For example, for n= 15,

A
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3. Let A=



1 2

−2 1



. Find all eigenvalues of A. For each eigenvalue, nd an associated

eigenvector.

Solution.

The characteristic polynomial is

λ
2 − Tr(A)λ+ det(A) = λ

2 − 2λ+ 5

λ
2 − 2λ+ 5= 0 ⇐⇒ λ =
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4− 20

2
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2
= 1± 2i.

For the eigenvalue λ = 1−2i, we use the shortcut trick you may have seen in class:
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From the correspondence between conjugate eigenvalues and their eigenvectors,

we know (without doing any additional work!) that for the eigenvalue λ = 1+ 2i,

a corresponding eigenvector is w= v =



−2
−2i



.

If you used row-reduction for nding eigenvectors, you would nd v =


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as an

eigenvector for eigenvalue 1− 2i, and w =
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1



as an eigenvector for eigenvalue

1+ 2i.



4. Axel and Billy are magicians who compete for customers in a group of 180 people.

Today, Axel has 120 customers and Billy has 60 customers. Each day:

• 30% of Axel’s customers keep attending Axel’s show, while 70% of Axel’s cus-

tomers switch to Billy’s show.

• 80% of Billy’s customers attend Billy’s show, while 20% of Billy’s customers

switch to Axel’s show.

(a) Write a positive stochastic matrix B and a vector x so that Bx will give the

number of customers for Axel’s show and Billy’s show (in that order) tomor-

row. You do not need to compute Bx .

Solution.

Using the information we have been given, we have

B =
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, x =
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(b) Find the steady-state vector w for B.

Solution.
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, so for the 1-eigenspace

we get x1 = 2
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(c) In the long run, roughly how many daily customers will Billy have?

Solution.

From the steady-state vector, Billy will have roughly 7/9 of the 180 total cus-

tomers, which is
7

9
· 180= 140 customers.


