Math 1553 Worksheet §6.1 - §6.5 Solutions

- **1.** True/False. Justify your answer.
 - a) If u is a vector that is orthogonal to itself, then u = 0.
 - **b)** If y is in a subspace W, the orthogonal projection of y onto W^{\perp} is 0.
 - c) If x is orthogonal to v and w, then x is also orthogonal to v w.

Solution.

- (1) TRUE: If *u* is orthogonal to itself, then $u \cdot u = ||u||^2 = 0$. Therefore, *u* has length 0, so u = 0.
- (2) TRUE: *y* is in *W*, so $y \perp W^{\perp}$. Its orthogonal projection onto *W* is *y* and orthogonal projection onto W^{\perp} is 0. In fact *y* has orthogonal decomposition y = y + 0, where *y* is in *W* and 0 is in W^{\perp} .
- (3) TRUE: By properties of the dot product, if x is orthogonal to v and w then x is orthogonal to everything in Span $\{v, w\}$ (which includes v w).
- **2. a)** Find the standard matrix *B* for proj_W , where $W = \operatorname{Span} \left\{ \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix} \right\}$.
 - b) What are the eigenvalues of *B*? Is *B* diagonalizable?
 - c) Let $x = \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix}$. Find the projection x_W of x onto the subspace W and the orthogonal projection x_W of x onto the subspace W^{\perp}

thogonal projection $x_{W^{\perp}}$ of x onto the subspace W^{\perp} .

Solution.

a) We use the formula $B = \frac{1}{u \cdot u} u u^T$ where $u = \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}$ (this is the formula

 $B = A(A^{T}A)^{-1}A^{T}$ when "A" is just the single vector u).

$$B = \frac{1}{1(1) + 1(1) + (-1)(-1)} \begin{pmatrix} 1\\ 1\\ -1 \end{pmatrix} \begin{pmatrix} 1 & 1 & -1 \\ 1 & 1 & -1 \\ -1 & -1 & 1 \end{pmatrix}$$
$$\implies B = \frac{1}{3} \begin{pmatrix} 1 & 1 & -1\\ 1 & 1 & -1\\ -1 & -1 & 1 \end{pmatrix}.$$

b) Bx = x for every x in W, and Bx = 0 for every x in W^{\perp} , so B has two eigenvalues: $\lambda_1 = 1$ with algebraic and geometric multiplicity 1, $\lambda_2 = 0$ with algebraic and geometric multiplicity 2. Therefore, B is diagonalizable. As an aside, we could actually compute B using diagonalization if we wanted! Here

$$v_1 = \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}$$
 is an eigenvector for $\lambda_1 = 1$, whereas $v_2 = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}$ and $v_3 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$

are linearly independent vectors that are orthogonal to v_1 , so they span the eigenspace for $\lambda_2 = 0$. Therefore

$$B = \begin{pmatrix} 1 & 1 & 1 \\ 1 & -1 & 0 \\ -1 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 1 & -1 & 0 \\ -1 & 0 & 1 \end{pmatrix}^{-1}$$

c) Now that we've computed our standard matrix *B* for $proj_W$, we can represent

the projection x_W of x onto $W = \text{Span} \left\{ \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \right\}$ as

$$x_{W} = Bx = \frac{1}{3} \begin{pmatrix} 1 & 1 & -1 \\ 1 & 1 & -1 \\ -1 & -1 & 1 \end{pmatrix} \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix} = \frac{1}{3} \begin{pmatrix} 3 \\ 3 \\ -3 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}$$

and thus the orthogonal projection $x_{W^{\perp}}$ is just whatever is left of x after we subtract x_W (the part of x that lies on W):

$$x_{W^{\perp}} = \begin{pmatrix} 2\\1\\0 \end{pmatrix} - \begin{pmatrix} 1\\1\\-1 \end{pmatrix} = \begin{pmatrix} 1\\0\\1 \end{pmatrix}$$

3. Use least-squares to find the best fit line y = Ax + B through the points (0,0), (1,8), (3,8), and (4,20).

Solution.

We want to find a least squares solution to the system of linear equations

$$\begin{array}{cccc}
0 = A(0) + B \\
8 = A(1) + B \\
8 = A(3) + B \\
20 = A(4) + B
\end{array} \iff \begin{pmatrix}
0 & 1 \\
1 & 1 \\
3 & 1 \\
4 & 1
\end{pmatrix} \begin{pmatrix}
A \\
B
\end{pmatrix} = \begin{pmatrix}
0 \\
8 \\
8 \\
20
\end{pmatrix}.$$

We compute

$$\begin{pmatrix} 0 & 1 & 3 & 4 \\ 1 & 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 1 \\ 3 & 1 \\ 4 & 1 \end{pmatrix} = \begin{pmatrix} 26 & 8 \\ 8 & 4 \end{pmatrix}$$
$$\begin{pmatrix} 0 & 1 & 3 & 4 \\ 1 & 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 0 \\ 8 \\ 8 \\ 20 \end{pmatrix} = \begin{pmatrix} 112 \\ 36 \end{pmatrix}$$
$$\begin{pmatrix} 26 & 8 \\ 8 & 4 \\ 8 & 4 \\ 36 \end{pmatrix} \stackrel{\text{rref}}{\longrightarrow} \begin{pmatrix} 1 & 0 & | & 4 \\ 0 & 1 & | & 1 \end{pmatrix}.$$

Hence the least squares solution is A = 4 and B = 1, so the best fit line is y = 4x + 1.