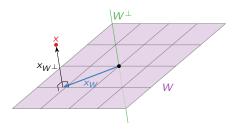
Orthogonal Projections

Review of 6.3 so far

Recall: Let W be a subspace of \mathbf{R}^n .

- ▶ The **orthogonal complement** W^{\perp} is the set of vectors orthogonal to everything in W.
- ▶ The **orthogonal decomposition** of a vector x with respect to W is the unique way of writing $x = x_W + x_{W^{\perp}}$ for x_W in W and $x_{W^{\perp}}$ in W^{\perp} .
- ► The vector x_W is the **orthogonal projection** of x onto W. It is the closest vector to x in W.
- ▶ To compute x_W , write W as Col A and solve $A^T A v = A^T x$; then $x_W = A v$.



Projection as a Transformation

Change in Perspective: let us consider orthogonal projection as a *transformation*.

Definition

Let W be a subspace of \mathbb{R}^n . Define a transformation

$$T \colon \mathbf{R}^n \longrightarrow \mathbf{R}^n$$
 by $T(x) = x_W$.

This transformation is also called **orthogonal projection** with respect to W.

Theorem

Let W be a subspace of \mathbf{R}^n and let $T \colon \mathbf{R}^n \to \mathbf{R}^n$ be the orthogonal projection with respect to W. Then:

- 1. T is a *linear* transformation.
- 2. For every x in \mathbb{R}^n , T(x) is the *closest* vector to x in W.
- 3. For every x in W, we have T(x) = x.
- 4. For every x in W^{\perp} , we have T(x) = 0.
- 5. $T \circ T = T$.
- 6. The range of T is W and the null space of T is W^{\perp} .

Projection Matrix Method 1

Let W be a subspace of \mathbf{R}^n and let $T \colon \mathbf{R}^n \to \mathbf{R}^n$ be the orthogonal projection with respect to W.

Since T is a linear transformation, it has a matrix. How do you compute it?

The same as any other linear transformation: compute $T(e_1), T(e_2), \ldots, T(e_n)$.

Projection Matrix Example

Problem: Let $L = \text{Span}\{\binom{3}{2}\}$ and let $T \colon \mathbf{R}^2 \to \mathbf{R}^2$ be the orthogonal projection onto L. Compute the matrix A for T.

Projection Matrix Another Example

Problem: Let

$$W = \left\{ \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \text{ in } \mathbf{R}^3 \mid x_1 - x_2 + x_3 = 0 \right\}$$

and let $T \colon \mathbf{R}^3 \to \mathbf{R}^3$ be orthogonal projection onto W. Compute the matrix B for T.

Projection Matrix Another Example, Continued

Problem: Let

$$W = \left\{ \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \text{ in } \mathbf{R}^3 \mid x_1 - x_2 + x_3 = 0 \right\}$$

and let $T: \mathbf{R}^3 \to \mathbf{R}^3$ be orthogonal projection onto W. Compute the matrix B for T.

Projection Matrix Method 2

Theorem

Let $\{v_1, v_2, \dots, v_m\}$ be a *linearly independent* set in \mathbf{R}^n , and let

$$A = \left(\begin{array}{cccc} | & | & & | \\ v_1 & v_2 & \cdots & v_m \\ | & | & & | \end{array}\right).$$

Then the $m \times m$ matrix $A^T A$ is invertible.

Proof:

Theorem

Let $\{v_1, v_2, \dots, v_m\}$ be a *linearly independent* set in \mathbf{R}^n , and let

$$A = \begin{pmatrix} | & | & & | \\ v_1 & v_2 & \cdots & v_m \\ | & | & & | \end{pmatrix}.$$

Then the $m \times m$ matrix $A^T A$ is invertible.

Let W be a subspace of \mathbf{R}^n and let $T: \mathbf{R}^n \to \mathbf{R}^n$ be the orthogonal projection with respect to W. Let $\{v_1, v_2, \ldots, v_m\}$ be a *basis* for W and let A be the matrix with columns v_1, v_2, \ldots, v_m . To compute $T(x) = x_W$ you solve $A^T A v = A x$; then $x_W = A v$.

$$v = (A^T A)^{-1} (A^T x) \implies T(x) = Av = [A(A^T A)^{-1} A^T] x.$$

If the columns of A are a basis for W then the matrix for T is

$$A(A^TA)^{-1}A^T$$
.

Projection Matrix Example

Problem: Let $L = \text{Span}\{\binom{3}{2}\}$ and let $T : \mathbb{R}^2 \to \mathbb{R}^2$ be the orthogonal projection onto L. Compute the matrix A for T.

Matrix of Projection onto a Line

If $L = \operatorname{Span}\{u\}$ is a line in \mathbf{R}^n , then the matrix for projection onto L is

$$\frac{1}{u \cdot u} u u^T$$

Projection Matrix Another Example

Problem: Let

$$W = \left\{ \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \text{ in } \mathbf{R}^3 \mid x_1 - x_2 + x_3 = 0 \right\}$$

and let $T \colon \mathbf{R}^3 \to \mathbf{R}^3$ be orthogonal projection onto W. Compute the matrix B for T.

Projection Matrix Facts

Theorem

Let W be an m-dimensional subspace of \mathbf{R}^n , let $T \colon \mathbf{R}^n \to W$ be the projection, and let A be the matrix for T. Then:

- 1. Col A = W, which is the 1-eigenspace.
- 2. Nul $A = W^{\perp}$, which is the 0-eigenspace.
- 3. $A^2 = A$.
- A is similar to the diagonal matrix with m ones and n m zeros on the diagonal.

Example: If W is a plane in \mathbb{R}^3 , then A is similar to projection onto the xy-plane:

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

A Projection Matrix is Diagonalizable

Let W be an m-dimensional subspace of \mathbf{R}^n , let $T \colon \mathbf{R}^n \to \mathbf{R}^n$ be the orthogonal projection onto W, and let A be the matrix for T. Here's how to diagonalize A:

- ▶ Find a basis $\{v_1, v_2, \ldots, v_m\}$ for W.
- ▶ Find a basis $\{v_{m+1}, v_{m+2}, \dots, v_n\}$ for W^{\perp} .
- ► Then

$$A = \begin{pmatrix} | & | & & | \\ v_1 & v_2 & \cdots & v_n \\ | & | & & | \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} | & | & & | \\ v_1 & v_2 & \cdots & v_n \\ | & | & & | \end{pmatrix}^{-1}$$

Remark: If you already have a basis for W, then it's faster to compute $A(A^TA)^{-1}A^T$.

A Projection Matrix is Diagonalizable Example

Problem: Let

$$W = \left\{ \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \text{ in } \mathbf{R}^3 \mid x_1 - x_2 + x_3 = 0 \right\}$$

and let $T: \mathbf{R}^3 \to \mathbf{R}^3$ be orthogonal projection onto W. Compute the matrix B for T.

General Reflections (Just for fun!)

Let W be a subspace of \mathbb{R}^n and let x be a vector in \mathbb{R}^n .

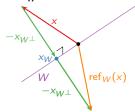
Definition

The **reflection** of x over W is the vector $\operatorname{ref}_W(x) = x - 2x_{W^{\perp}}$.

In other words, to find $\operatorname{ref}_W(x)$ one starts at x, then moves to $x-x_{W^\perp}=x_W$, then continues in the same direction one more time, to end on the opposite side of W.

Since $x_{W^{\perp}} = x - x_W$ we have

$$\operatorname{ref}_{W}(x) = x - 2(x - x_{W}) = 2x_{W} - x.$$



If T is the orthogonal projection, then

$$ref_W(x) = 2T(x) - x.$$

Theorem

Let W be an m-dimensional subspace of \mathbb{R}^n , and let A be the matrix for ref $_W$. Then

- 1. $\operatorname{ref}_W \circ \operatorname{ref}_W$ is the identity transformation and A^2 is the identity matrix.
- 2. ref_W and A are invertible; they are their own inverses.
- 3. The 1-eigenspace of A is W and the -1-eigenspace of A is W^{\perp} .
- 4. A is similar to the diagonal matrix with m ones and n-m negative ones on the diagonal.
- 5. If B is the matrix for the orthogonal projection onto W, then $A = 2B I_n$.

Example: Let

$$W = \left\{ \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \text{ in } \mathbf{R}^3 \mid x_1 - x_2 + x_3 = 0 \right\}.$$

The matrix for ref_W is

$$A = 2 \cdot \frac{1}{3} \begin{pmatrix} 2 & 1 & -1 \\ 1 & 2 & 1 \\ -1 & 1 & 2 \end{pmatrix} - I_3 = \frac{1}{3} \begin{pmatrix} 1 & 2 & -2 \\ 2 & 1 & 2 \\ -2 & 2 & 1 \end{pmatrix}.$$

Summary

Today we considered orthogonal projection as a transformation.

- Orthogonal projection is a linear transformation.
- We gave three methods to compute its matrix.
- ▶ Four if you count the special case when *W* is a line.
- ▶ The matrix for projection onto W has eigenvalues 1 and 0 with eigenspaces W and W^{\perp} .
- A projection matrix is diagonalizable.
- ▶ (Just for fun!) Reflection is 2×projection minus the identity.