Section 6.2

Orthogonal Complements

Orthogonal Complements

Definition

Let W be a subspace of \mathbf{R}^n . Its orthogonal complement is

$$W_{\perp}^{\perp} = \left\{ v \text{ in } \mathbf{R}^{n} \mid v \cdot w = 0 \text{ for all } w \text{ in } W \right\} \text{ read "W perp"}$$
$$W_{\perp}^{\perp} \text{ is orthogonal complement}$$
$$A^{T} \text{ is transpose}$$

Pictures:

The orthogonal complement of a line in \mathbf{R}^2 is the perpendicular line. [interactive]

The orthogonal complement of a line in \mathbf{R}^3 is the perpendicular plane. [interactive]

The orthogonal complement of a plane in \mathbf{R}^3 is the perpendicular line. [interactive]

Poll

Let W be a subspace of \mathbf{R}^n .

Facts:

1.
$$W^{\perp}$$
 is also a subspace of \mathbb{R}^{n}
2. $(W^{\perp})^{\perp} = W$
3. dim W + dim $W^{\perp} = n$
4. If $A = \begin{pmatrix} v_{1} & v_{2} & \cdots & v_{m} \end{pmatrix}$ and $W = \text{Col } A$, then $W^{\perp} = \text{Nul}(A^{T})$ since
 $W^{\perp} = \text{all vectors orthogonal to each } v_{1}, v_{2}, \dots, v_{m}$
 $= \{x \text{ in } \mathbb{R}^{n} \mid x \cdot v_{i} = 0 \text{ for all } i = 1, 2, \dots, m\}$
 $= \text{Nul} \begin{pmatrix} -v_{1}^{T} \\ -v_{2}^{T} \\ \vdots \\ -v_{m}^{T} \end{pmatrix} = \text{Nul}(A^{T}).$

Orthogonal Complements

Computation

Problem: if
$$W = \text{Span} \left\{ \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \right\}$$
, compute W^{\perp} .

[interactive]

$$\mathsf{Span}\{v_1, v_2, \dots, v_m\}^{\perp} = \mathsf{Nul}\begin{pmatrix} -v_1^T - \\ -v_2^T - \\ \vdots \\ -v_m^T - \end{pmatrix}$$

Row space, column space, null space

Definition

The **row space** of an $m \times n$ matrix A is the span of the *rows* of A. It is denoted Row A. Equivalently, it is the column space of A^{T} :

Row
$$A = \operatorname{Col} A^T$$
.

It is a subspace of \mathbf{R}^n .

We showed before that if A has rows $v_1^T, v_2^T, \ldots, v_m^T$, then

$$\operatorname{Span}\{v_1, v_2, \ldots, v_m\}^{\perp} = \operatorname{Nul} A.$$

Hence we have shown:

Fact: $(\operatorname{Row} A)^{\perp} = \operatorname{Nul} A$.

Replacing A by A^{T} , and remembering Row $A^{T} = \text{Col } A$:

Fact: $(\operatorname{Col} A)^{\perp} = \operatorname{Nul} A^{T}$.

Using property 2 and taking the orthogonal complements of both sides, we get: Fact: $(\operatorname{Nul} A)^{\perp} = \operatorname{Row} A$ and $\operatorname{Col} A = (\operatorname{Nul} A^{\mathsf{T}})^{\perp}$.

Dimension of the row space

Even though Row(A) lives in \mathbb{R}^n and Col(A) lives in \mathbb{R}^m if A is an $m \times n$ matrix, both subspaces have the same dimension.

Theorem

```
If A is an m \times n matrix, then dim(Row A) = dim(Col A).
```

Orthogonal Complements of Most of the Subspaces We've Seen

For any vectors v_1, v_2, \ldots, v_m :

$$\mathsf{Span}\{v_1, v_2, \dots, v_m\}^{\perp} = \mathsf{Nul}\begin{pmatrix} -v_1^T - \\ -v_2^T - \\ \vdots \\ -v_m^T - \end{pmatrix}$$

For any matrix A:

 $\operatorname{Row} A = \operatorname{Col} A^{T}$

and

 $(\operatorname{Row} A)^{\perp} = \operatorname{Nul} A \quad \operatorname{Row} A = (\operatorname{Nul} A)^{\perp}$ $(\operatorname{Col} A)^{\perp} = \operatorname{Nul} A^{\mathsf{T}} \quad \operatorname{Col} A = (\operatorname{Nul} A^{\mathsf{T}})^{\perp}$

For any other subspace W, first find a basis v_1, \ldots, v_m , then use the above trick to compute $W^{\perp} = \text{Span}\{v_1, \ldots, v_m\}^{\perp}$.

Section 6.3

Orthogonal Projections (will finish in next set of slides)

Suppose you measure a data point x which you know for theoretical reasons must lie on a subspace W.

Due to measurement error, though, the measured x is not actually in W. Best approximation: y is the *closest* point to x on W.

How do you know that y is the closest point? The vector from y to x is orthogonal to W: it is in the *orthogonal complement* W^{\perp} .

Theorem

Every vector x in \mathbf{R}^n can be written as

 $x = x_W + x_{W^{\perp}}$

for unique vectors x_W in W and $x_{W^{\perp}}$ in W^{\perp} .

The equation $x = x_W + x_{W^{\perp}}$ is called the **orthogonal decomposition** of x (with respect to W).

The vector x_W is the **orthogonal projection** of x onto W.

The vector x_W is the closest vector to x on W.

[interactive 1] [interactive 2]

Orthogonal Decomposition Justification

Theorem

Every vector x in \mathbf{R}^n can be written as

 $x = x_W + x_{W^{\perp}}$

for unique vectors x_W in W and $x_{W^{\perp}}$ in W^{\perp} .

Why?

Orthogonal Decomposition Example

Let W be the xy-plane in \mathbb{R}^3 . Then W^{\perp} is the z-axis.

$$x = \begin{pmatrix} 2\\1\\3 \end{pmatrix} \implies x_W = \qquad \qquad x_{W^{\perp}} = \\x = \begin{pmatrix} a\\b\\c \end{pmatrix} \implies x_W = \qquad \qquad x_{W^{\perp}} =$$

This is just decomposing a vector into a "horizontal" component (in the xy-plane) and a "vertical" component (on the *z*-axis).

Problem: Given x and W, how do you compute the decomposition $x = x_W + x_{W^{\perp}}$? Observation: It is enough to compute x_W , because $x_{W^{\perp}} = x - x_W$.

Theorem (The $A^T A$ Trick)

Let W be a subspace of \mathbf{R}^n , let v_1, v_2, \ldots, v_m be a spanning set for W (e.g., a basis), and let

$$A = \begin{pmatrix} | & | & | \\ v_1 & v_2 & \cdots & v_m \\ | & | & | \end{pmatrix}$$

Then for any x in \mathbf{R}^n , the matrix equation

$$A^T A v = A^T x$$
 (in the unknown vector v)

is consistent, and $x_W = Av$ for any solution v.

Recipe for Computing $x = x_W + x_{W^{\perp}}$

- Write W as a column space of a matrix A.
- Find a solution v of $A^T A v = A^T x$ (by row reducing).

• Then
$$x_W = Av$$
 and $x_{W^{\perp}} = x - x_W$.

Problem: Compute the orthogonal projection of a vector $x = (x_1, x_2, x_3)$ in \mathbb{R}^3 onto the *xy*-plane.

Problem: Let

$$x = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \qquad W = \left\{ \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \text{ in } \mathbf{R}^3 \mid x_1 - x_2 + x_3 = \mathbf{0} \right\}.$$

Compute the distance from x to W.

Problem: Let

$$x = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \qquad W = \left\{ \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \text{ in } \mathbf{R}^3 \mid x_1 - x_2 + x_3 = \mathbf{0} \right\}.$$

Compute the distance from x to W.

[interactive]

The $A^T A$ Trick

Theorem (The $A^T A$ Trick)

Let W be a subspace of \mathbf{R}^n , let v_1, v_2, \ldots, v_m be a spanning set for W (e.g., a basis), and let

$$A = \begin{pmatrix} | & | & | \\ v_1 & v_2 & \cdots & v_m \\ | & | & | \end{pmatrix}$$

Then for any x in \mathbf{R}^n , the matrix equation

 $A^T A v = A^T x$ (in the unknown vector v)

is consistent, and $x_W = Av$ for any solution v.

Proof:

Orthogonal Projection onto a Line

Problem: Let $L = \text{Span}\{u\}$ be a line in \mathbb{R}^n and let x be a vector in \mathbb{R}^n . Compute x_L .

Projection onto a Line
The projection of x onto a line
$$L = \text{Span}\{u\}$$
 is
 $x_L = \frac{u \cdot x}{u \cdot u} u \qquad x_{L\perp} = x - x_L.$

Orthogonal Projection onto a Line Example

Problem: Compute the orthogonal projection of $x = \begin{pmatrix} -6 \\ 4 \end{pmatrix}$ onto the line *L* spanned by $u = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$, and find the distance from *u* to *L*.

[interactive]

Summary

Let W be a subspace of \mathbf{R}^n .

- ▶ The orthogonal complement W^{\perp} is the set of all vectors orthogonal to everything in W.
- We have $(W^{\perp})^{\perp} = W$ and dim $W + \dim W^{\perp} = n$.
- ► Row $A = \operatorname{Col} A^T$, $(\operatorname{Row} A)^{\perp} = \operatorname{Nul} A$, Row $A = (\operatorname{Nul} A)^{\perp}$, $(\operatorname{Col} A)^{\perp} = \operatorname{Nul} A^T$, Col $A = (\operatorname{Nul} A^T)^{\perp}$.
- Orthogonal decomposition: any vector x in Rⁿ can be written in a unique way as x = x_W + x_{W[⊥]} for x_W in W and x_{W[⊥]} in W[⊥]. The vector x_W is the orthogonal projection of x onto W.
- The vector x_W is the closest point to x in W: it is the best approximation.
- The *distance* from x to W is $||x_{W^{\perp}}||$.
- If W = Col A then to compute x_W , solve the equation $A^T A v = A^T x$; then $x_W = A v$.
- If $W = L = \text{Span}\{u\}$ is a line then $x_L = \frac{u \cdot x}{u \cdot u} u$.