Chapter 6

Orthogonality

Section 6.1

Dot Products and Orthogonality

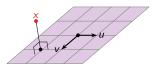
Orientation

Recall: This course is about learning to:

- ▶ Solve the matrix equation Ax = b
- ▶ Solve the matrix equation $Ax = \lambda x$
- ▶ Almost solve the equation Ax = b

We are now aiming at the last topic.

Idea: In the real world, data is imperfect. Suppose you measure a data point x which you know for theoretical reasons must lie on a plane spanned by two vectors u and v.



Due to measurement error, though, the measured x is not actually in $\operatorname{Span}\{u,v\}$. In other words, the equation au+bv=x has no solution. What do you do? The real value is probably the *closest* point to x on $\operatorname{Span}\{u,v\}$. Which point is that?

The Dot Product

We need a notion of *angle* between two vectors, and in particular, a notion of *orthogonality* (i.e. when two vectors are perpendicular). This is the purpose of the dot product.

Definition

The **dot product** of two vectors x, y in \mathbb{R}^n is

$$x \cdot y = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \cdot \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix} \stackrel{\text{def}}{=} x_1 y_1 + x_2 y_2 + \dots + x_n y_n.$$

Thinking of x, y as column vectors, this is the same as $x^T y$.

Example

$$\begin{pmatrix}1\\2\\3\end{pmatrix}\cdot\begin{pmatrix}4\\5\\6\end{pmatrix}=\begin{pmatrix}1&2&3\end{pmatrix}\begin{pmatrix}4\\5\\6\end{pmatrix}=$$

Properties of the Dot Product

Many usual arithmetic rules hold, as long as you remember you can only dot two vectors together, and that the result is a scalar.

- $\triangleright x \cdot y = y \cdot x$
- $(x+y) \cdot z = x \cdot z + y \cdot z$
- $(cx) \cdot y = c(x \cdot y)$

Dotting a vector with itself is special:

$$\begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = x_1^2 + x_2^2 + \dots + x_n^2.$$

Hence:

- $\rightarrow x \cdot x > 0$
- $\triangleright x \cdot x = 0$ if and only if x = 0.

Important: $x \cdot y = 0$ does *not* imply x = 0 or y = 0. For example, $\binom{1}{0} \cdot \binom{0}{1} = 0$.

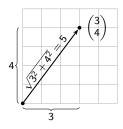
The Dot Product and Length

Definition

The **length** or **norm** of a vector x in \mathbb{R}^n is

$$||x|| = \sqrt{x \cdot x} = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2}.$$

Why is this a good definition? The Pythagorean theorem!



$$\left\| \begin{pmatrix} 3 \\ 4 \end{pmatrix} \right\| = \sqrt{3^2 + 4^2} = 5$$

Fact

If x is a vector and c is a scalar, then $||cx|| = |c| \cdot ||x||$.

$$\left\| \begin{pmatrix} 6 \\ 8 \end{pmatrix} \right\| = \left\| 2 \begin{pmatrix} 3 \\ 4 \end{pmatrix} \right\| =$$

The Dot Product and Distance

Definition

The **distance** between two points x, y in \mathbb{R}^n is

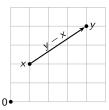
$$\mathsf{dist}(x,y) = \|y - x\|.$$

This is just the length of the vector from x to y.

Example

Let x = (1, 2) and y = (4, 4). Then

$$dist(x, y) =$$



Unit Vectors

Definition

A unit vector is a vector v with length ||v|| = 1.

Example

The unit coordinate vectors are unit vectors:

$$\|e_1\| = \left\| egin{pmatrix} 1 \ 0 \ 0 \end{pmatrix}
ight\| = \sqrt{1^2 + 0^2 + 0^2} = 1$$

Definition

Let x be a nonzero vector in \mathbf{R}^n . The unit vector in the direction of x is the vector $\frac{x}{\|x\|}$.

This is in fact a unit vector:

$$\frac{\left\| x \right\|}{\left\| x \right\|} = \frac{1}{\left\| x \right\|} \left\| x \right\| = 1.$$

Unit Vectors Example

Example

What is the unit vector in the direction of $x = \begin{pmatrix} 3 \\ 4 \end{pmatrix}$?

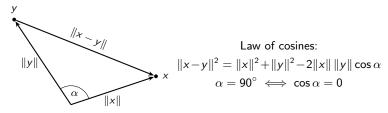
Orthogonality

Definition

Two vectors x, y are **orthogonal** or **perpendicular** if $x \cdot y = 0$.

Notation: $x \perp y$ means $x \cdot y = 0$.

Why is this a good definition? The Pythagorean theorem / law of cosines!



Fact:
$$x \perp y \iff ||x - y||^2 = ||x||^2 + ||y||^2$$

Orthogonality Example

Problem: Find *all* vectors orthogonal to
$$v = \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}$$
.

Orthogonality Example

Problem: Find *all* vectors orthogonal to both
$$v = \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}$$
 and $w = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$.

Orthogonality General procedure

Problem: Find all vectors orthogonal to some number of vectors v_1, v_2, \ldots, v_m in \mathbb{R}^n .

This is the same as finding all vectors x such that

$$0=v_1^Tx=v_2^Tx=\cdots=v_m^Tx.$$

Putting the *row* vectors
$$v_1^T, v_2^T, \dots, v_m^T$$
 into a matrix, this is the same as finding all x such that
$$\begin{pmatrix} -v_1^T - \\ -v_2^T - \\ \vdots \\ -v_m^T - \end{pmatrix} x = \begin{pmatrix} v_1 \cdot x \\ v_2 \cdot x \\ \vdots \\ v_m \cdot x \end{pmatrix} = 0.$$

Important

The set of all vectors orthogonal to some vectors v_1, v_2, \ldots, v_m in \mathbf{R}^n is the *null space* of the $m \times n$ matrix you get by "turning them v_1, v_2, \ldots, v_m ". sideways and smooshing them together:"

$$\begin{pmatrix} -v_1' - \\ -v_2^T - \\ \vdots \\ -v_m^T - \end{pmatrix}$$

In particular, this set is a subspace!

Summary

- ▶ The **dot product** of vectors x, y in \mathbb{R}^n is the number $x^T y$.
- ▶ The **length** or **norm** of a vector x in \mathbb{R}^n is $||x|| = \sqrt{x \cdot x}$.
- ▶ The **distance** between two vectors x, y in \mathbb{R}^n is $\operatorname{dist}(x, y) = \|y x\|$.
- ▶ A unit vector is a vector v with length ||v|| = 1.
- ▶ The unit vector in the direction of x is $x/\|x\|$.
- ▶ Two vectors x, y are **orthogonal** if $x \cdot y = 0$.
- ▶ The set of all vectors orthogonal to some vectors $v_1, v_2, ..., v_m$ in \mathbf{R}^n is the null space of the matrix

$$\begin{pmatrix} -v_1^T - \\ -v_2^T - \\ \vdots \\ -v_m^T - \end{pmatrix}.$$