Math 1553 Worksheet §3.4

Solutions

- **1.** True or false. Answer true if the statement is *always* true. Otherwise, answer false. If your answer is false, either give an example that shows it is false or (in the case of an incorrect formula) state the correct formula.
 - a) If A is an $n \times n$ matrix and the equation Ax = b has at least one solution for each b in \mathbb{R}^n , then the solution is *unique* for each b in \mathbb{R}^n .
 - **b)** If *A* is a 3 × 4 matrix and *B* is a 4 × 2 matrix, then the linear transformation *Z* defined by Z(x) = ABx has domain \mathbb{R}^3 and codomain \mathbb{R}^2 .

Solution.

- a) True. The first part says the transformation T(x) = Ax is onto. Since A is $n \times n$, then it has n pivots. This is the same as saying that the transformation T(x) = Ax is both one-to-one and onto. Therefore, the equation Ax = b has exactly one solution for each b in \mathbb{R}^n .
- **b)** False. In order for Bx to make sense, x must be in \mathbb{R}^2 , and so Bx is in \mathbb{R}^4 and A(Bx) is in \mathbb{R}^3 . Therefore, the domain of Z is \mathbb{R}^2 and the codomain of Z is \mathbb{R}^3 .
- **2.** *A* is $m \times n$ matrix, *B* is $n \times m$ matrix. Select all correct answers from the box. It is possible to have more than one correct answer.
 - a) Suppose x is in \mathbb{R}^m . Then ABx must be in: $\boxed{\text{Col}(A), \text{Nul}(A), \text{Col}(B), \text{Nul}(B)}$
 - **b)** Suppose x in \mathbb{R}^n . Then BAx must be in: $\boxed{\text{Col}(A), \text{Nul}(A), \text{Col}(B), \text{Nul}(B)}$
 - c) If m > n, then columns of AB could be linearly independent, dependent
 - **d)** If m > n, then columns of BA could be linearly independent, dependent

Solution.

Recall, AB can be computed as A multiplying every column of B. That is $AB = \begin{pmatrix} Ab_1 & Ab_2 & \cdots & Ab_m \end{pmatrix}$ where $B = \begin{pmatrix} b_1 & b_2 & \cdots & b_m \end{pmatrix}$.

- a) Col(A). Denote w := Bx, which is a vector in \mathbb{R}^n . ABx = A(Bx) is multiplying A with W which will end up with "linear combination of columns of A". So ABx is in Col(A).
- **b)** Col(B). Similarly, BAx = B(Ax) is multiplying B with Ax, a vector in R^m , which will end up with "linear combination of columns of B". So BAx is in Col(B).

2 Solutions

c) dependent. Since m > n means A matrix can have at most n pivots. So $dim(Col(A)) \le n$. Notice from first question we know $Col(AB) \subset Col(A)$ which has dimension at most n. That means AB can have at most n pivots. But AB is $m \times m$ matrix, then columns of AB must be dependent.

d) independent, dependent. Both are possible. Since m > n means B matrix can have at most n pivots. then $Col(BA) \subset Col(B)$ means BA can have at most n pivots. Since BA is $n \times n$ matrix, then the columns of BA will be linearly independent when there are n pivots or linearly dependent when there are less than n pivots. Here are two examples.

$$A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix}, B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}, \text{ then } BA = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}, B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}, \text{ then } BA = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$

To summarize what we are actually study here, there are several relations between these subspaces. The symbol \subseteq means "is contained in (or possibly equal to)..."

$$Col(AB) \subseteq Col(A);$$

 $Col(BA) \subseteq Col(B);$
 $Nul(A) \subseteq Nul(BA);$
 $Nul(B) \subseteq Nul(AB);$

3. Consider the following linear transformations:

 $T: \mathbf{R}^3 \longrightarrow \mathbf{R}^2$ T projects onto the xy-plane, forgetting the z-coordinate

 $U: \mathbf{R}^2 \longrightarrow \mathbf{R}^2$ U rotates clockwise by 90°

 $V: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ V scales the x-direction by a factor of 2.

Let A, B, C be the matrices for T, U, V, respectively.

- **a)** Write *A*, *B*, and *C*.
- **b)** Compute the matrix for $U \circ V \circ T$.

Solution.

a) We plug in the unit coordinate vectors:

$$T(e_1) = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \quad T(e_2) = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \quad T(e_3) = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \quad \Longrightarrow \quad A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$

$$U(e_1) = \begin{pmatrix} 0 \\ -1 \end{pmatrix} \quad U(e_2) = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \quad \Longrightarrow \quad B = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}.$$

$$V(e_1) = \begin{pmatrix} 2 \\ 0 \end{pmatrix} \quad V(e_2) = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \quad \Longrightarrow \quad C = \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}$$

b)
$$BCA = \begin{pmatrix} 0 & 1 & 0 \\ -2 & 0 & 0 \end{pmatrix}$$
.