Math 1553 Worksheet: Chapter 5.1-5.2

- **1.** True or false. Answer true if the statement is *always* true. Otherwise, answer false. If your answer is false, either give an example that shows it is false or (in the case of an incorrect formula) state the correct formula.
 - a) If v_1 and v_2 are linearly independent eigenvectors of an $n \times n$ matrix A, then they must correspond to different eigenvalues.
 - **b)** If *A* is a 3×3 matrix with characteristic polynomial $-\lambda(\lambda 5)^2$, then the 5-eigenspace is 2-dimensional.

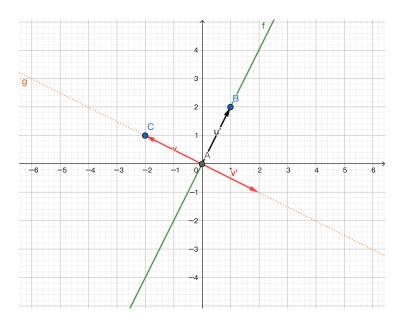
Solution.

- a) False. For example, if $A = I_2$ then $e_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ and $e_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ are linearly independent eigenvectors both corresponding to the eigenvalue $\lambda = 1$.
- b) False. The dimension of the 5-eigenspace can be 1 or 2. For example, the matrix $\begin{pmatrix} 5 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ has a 5-eigenspace which is 2-dimensional, whereas the matrix $\begin{pmatrix} 5 & 1 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ has a 5-eigenspace which is 1-dimensional. Both matrices have characteristic polynomial $-\lambda(5-\lambda)^2$.

2. Let *A* be the matrix of the linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ that reflects vectors over the line y = 2x in \mathbb{R}^2 . Find the eigenvectors and eigenvalues of *A* without doing any matrix calculations. (Draw a picture!)

Solution.

Here is a picture:



T fixes every vector along the line y = 2x, so $\lambda = 1$ is an eigenvalue and its eigenvectors are all vectors $\begin{pmatrix} t \\ 2t \end{pmatrix}$ where $t \neq 0$.

T flips every vector along the line perpendicular to y=2x, which is $y=-\frac{1}{2}x$ (for example, T(-2,1)=(2,-1)). Therefore, $\lambda=-1$ is an eigenvalue and its eigenvectors are all vectors of the form $\begin{pmatrix} s \\ -\frac{1}{2}s \end{pmatrix}$ where $s\neq 0$.

3. Find the eigenvalues and a basis for each eigenspace of $A = \begin{pmatrix} 2 & 3 & 1 \\ 3 & 2 & 4 \\ 0 & 0 & -1 \end{pmatrix}$.

Solution.

We solve $0 = \det(A - \lambda I)$.

$$0 = \det \begin{pmatrix} 2 - \lambda & 3 & 1 \\ 3 & 2 - \lambda & 4 \\ 0 & 0 & -1 - \lambda \end{pmatrix} = (-1 - \lambda)(-1)^6 \det \begin{pmatrix} 2 - \lambda & 3 \\ 3 & 2 - \lambda \end{pmatrix} = (-1 - \lambda)((2 - \lambda)^2 - 9)$$
$$= (-1 - \lambda)(\lambda^2 - 4\lambda - 5) = -(\lambda + 1)^2(\lambda - 5).$$

So $\lambda = -1$ and $\lambda = 5$ are the eigenvalues.

$$\underline{\lambda = -1}: (A + I \mid 0) = \begin{pmatrix} 3 & 3 & 1 \mid 0 \\ 3 & 3 & 4 \mid 0 \\ 0 & 0 & 0 \mid 0 \end{pmatrix} \xrightarrow{R_2 = R_2 - R_1} \begin{pmatrix} 3 & 3 & 1 \mid 0 \\ 0 & 0 & 1 \mid 0 \\ 0 & 0 & 0 \mid 0 \end{pmatrix} \xrightarrow{R_1 = R_1 - R_2} \begin{pmatrix} 1 & 1 & 0 \mid 0 \\ 0 & 0 & 1 \mid 0 \\ 0 & 0 & 0 \mid 0 \end{pmatrix},$$

with solution $x_1 = -x_2$, $x_2 = x_2$, $x_3 = 0$. The (-1)-eigenspace has basis $\left\{ \begin{pmatrix} -1\\1\\0 \end{pmatrix} \right\}$.

 $\lambda = 5$:

$$(A-5I \mid 0) = \begin{pmatrix} -3 & 3 & 1 \mid 0 \\ 3 & -3 & 4 \mid 0 \\ 0 & 0 & -6 \mid 0 \end{pmatrix} \xrightarrow[R_3=R_3/(-6)]{R_2=R_2+R_1} \begin{pmatrix} -3 & 3 & 1 \mid 0 \\ 0 & 0 & 5 \mid 0 \\ 0 & 0 & 1 \mid 0 \end{pmatrix} \xrightarrow[\text{then } R_2 \leftrightarrow R_3, R_1/(-3)]{R_1=R_1-R_3, R_2=R_2-5R_3} \begin{pmatrix} 1 & -1 & 0 \mid 0 \\ 0 & 0 & 1 \mid 0 \\ 0 & 0 & 0 \mid 0 \end{pmatrix},$$

with solution $x_1 = x_2$, $x_2 = x_2$, $x_3 = 0$. The 5-eigenspace has basis $\left\{ \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \right\}$.