Math 1553, Quiz 6 (3.5-3.6, Ch. 4), Fall '25, Version B

Name	j	Ke-	1	GT II) ·	M. Agrania,	······································	_

Write your studio section below. It is a letter followed by a number (for example, A1).

- The quiz is worth 3 points. Only answers are graded, and there is no partial credit.
- For questions with bubbles, either fill in the bubble completely or leave it blank. **Do not** mark any bubble with "X" or "/" or any such intermediate marking. Anything other than a blank or filled bubble may result in a 0 on the problem, and regrade requests may be rejected without consideration.
- 1. (0.5 points each) True or false. If the statement is ever false, fill in the bubble for False.
 - (a) If A is a 3×3 matrix whose first column is the sum of its second and third columns, then $\det(A) = 0$.
 - True
 - O False

- A not invertible, 50 det(A)=0.
- (b) If A and B are invertible $n \times n$ matrices, then $(AB)^{-1} = A^{-1}B^{-1}$.
 - O True
 - False

- (AB)-1= B-1A-1
- 2. (0.25 points each) Suppose A is an $n \times n$ matrix. Which of the following statements must be true? Fill in the bubble for all that apply.
 - \bigcirc If there is a vector b in \mathbb{R}^n so that Ax = b has exactly one solution, then A must be invertible.
 - **6** If A is invertible, then A^4 must also be invertible.
 - \bigcirc If det(A) = 2, then det(3A) = 6.
 - **6** If the equation Ax = 0 has only the trivial solution, then A must be invertible.

(Problem 3 is on the back side)

- 3. (1 point) Suppose $\det \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} = 1.$
 - Find $\det \begin{pmatrix} 2a+5d & 2b+5e & 2c+5f \\ a & b & c \\ g & h & i \end{pmatrix}$. Fill in the bubble for your answer below.
 - \bigcirc 1/2
 - \bigcirc -1/2
 - \bigcirc 1/5
 - $\bigcirc -1/5$
 - \bigcirc 1/10
 - \bigcirc -1/10
 - O 1
 - \bigcirc -1
 - \bigcirc 2
 - \bigcirc -2
 - O 5
 - $\bigcirc -5$
 - O 10
 - \bigcirc -10
 - O none of these

 $\frac{1}{2} \left(\begin{array}{c} d & e & f \\ a & b & c \\ g & h & i \end{array} \right)$

a b c o is -

$$\frac{25R}{3} \left(\frac{5d}{3} \right) \left(\frac{5e}{3} \right) \left(\frac{5e}{$$

2n+Sd 2b+Se 2c+Sf

a b C

a h

det is still (5)