
Section 6.2

Orthogonal Complements



Orthogonal Complements

Definition
Let W be a subspace of Rn. Its orthogonal complement is

W⊥ =
{
v in Rn | v · w = 0 for all w in W

}
read “W perp”.

W⊥ is orthogonal complement
AT is transpose

Pictures:

The orthogonal complement of a line in R2 is the
perpendicular line. [interactive]

W
W⊥

The orthogonal complement of a line in R3 is the
perpendicular plane. [interactive]

W⊥
W

The orthogonal complement of a plane in R3 is the
perpendicular line. [interactive]

W
W⊥

http://textbooks.math.gatech.edu/ila/demos/spans.html?v1=2,3&captions=orthog
http://textbooks.math.gatech.edu/ila/demos/spans.html?v1=.3,0,1&captions=orthog&range=3
http://textbooks.math.gatech.edu/ila/demos/spans.html?v1=.957,0,-.287&v2=0,1,0&captions=orthog&range=3


Poll

Let W be a 2-plane in R4. How would you describe W⊥?

A. The zero space {0}.
B. A line in R4.

C. A plane in R4.

D. A 3-dimensional space in R4.

E. All of R4.

Poll

For example, if W is the xy -plane, then W⊥ is the zw -plane:
x
y
0
0

 ·


0
0
z
w

 = 0.



Orthogonal Complements
Basic properties

Let W be a subspace of Rn.

Facts:

1. W⊥ is also a subspace of Rn

2. (W⊥)⊥ = W

3. dimW + dimW⊥ = n

4. If A =
(
v1 v2 · · · vm

)
and W = Col A, then W⊥ = Nul(AT ) since

W⊥ = all vectors orthogonal to each v1, v2, . . . , vm

=
{
x in Rn | x · vi = 0 for all i = 1, 2, . . . ,m

}
= Nul


— vT

1 —
— vT

2 —...
— vT

m —

 = Nul(AT ).

Let’s check 1.
I Is 0 in W⊥? Yes: 0 · w = 0 for any w in W .
I Suppose x , y are in W⊥. So x · w = 0 and y · w = 0 for all w in W . Then

(x + y) · w = x · w + y · w = 0 + 0 = 0 for all w in W . So x + y is also in W⊥.
I Suppose x is in W⊥. So x · w = 0 for all w in W . If c is a scalar, then

(cx) · w = c(x · 0) = c(0) = 0 for any w in W . So cx is in W⊥.



Orthogonal Complements
Computation

Problem: if W = Span


 1

1
−1

 ,

1
1
1

, compute W⊥.

By property 4, we have to find the null space of the matrix whose rows are(
1 1 −1

)
and

(
1 1 1

)
, which we did before:

Nul

(
1 1 −1
1 1 1

)
= Span


−1

1
0

 .

[interactive]

Span{v1, v2, . . . , vm}⊥ = Nul


— vT

1 —
— vT

2 —...
— vT

m —



http://textbooks.math.gatech.edu/ila/demos/spans.html?v1=1,1,-1&v2=1,1,1&range=3&captions=orthog


Orthogonal Complements
Row space, column space, null space

Definition
The row space of an m × n matrix A is the span of the rows of A. It is
denoted RowA. Equivalently, it is the column space of AT :

RowA = ColAT .

It is a subspace of Rn.

We showed before that if A has rows vT
1 , vT

2 , . . . , vT
m , then

Span{v1, v2, . . . , vm}⊥ = NulA.

Hence we have shown:

Fact: (RowA)⊥ = NulA.

Replacing A by AT , and remembering RowAT = ColA:

Fact: (ColA)⊥ = NulAT .

Using property 2 and taking the orthogonal complements of both sides, we get:

Fact: (NulA)⊥ = RowA and ColA = (NulAT )⊥.



Dimension of the row space

Even though Row(A) lives in Rn and Col(A) lives in Rm if A is an m × n
matrix, both subspaces have the same dimension.

Theorem
If A is an m × n matrix, then dim(Row A) = dim(ColA).



Orthogonal Complements
Reference sheet

Orthogonal Complements of Most of the Subspaces We’ve Seen

For any vectors v1, v2, . . . , vm:

Span{v1, v2, . . . , vm}⊥ = Nul


— vT

1 —
— vT

2 —...
— vT

m —


For any matrix A:

RowA = ColAT

and

(RowA)⊥ = NulA RowA = (NulA)⊥

(ColA)⊥ = NulAT ColA = (NulAT )⊥

For any other subspace W , first find a basis v1, . . . , vm, then use the above
trick to compute W⊥ = Span{v1, . . . , vm}⊥.



Section 6.3

Orthogonal Projections (will finish in next set of slides)



Best Approximation

Suppose you measure a data point x which you know for theoretical reasons
must lie on a subspace W .

Wy

x

x − y

Due to measurement error, though, the measured x is not actually in W . Best
approximation: y is the closest point to x on W .

How do you know that y is the closest point? The vector from y to x is
orthogonal to W : it is in the orthogonal complement W⊥.



Orthogonal Decomposition

Theorem
Every vector x in Rn can be written as

x = xW + xW⊥

for unique vectors xW in W and xW⊥ in W⊥.

The equation x = xW + xW⊥ is called the orthogonal decomposition of x
(with respect to W ).

The vector xW is the orthogonal projection of x onto W .

The vector xW is the closest vector to x on W .

[interactive 1] [interactive 2]
WxW

x

xW⊥

http://textbooks.math.gatech.edu/ila/demos/projection.html?u1=1,0,0&u2=0,1.1,-.2&vec=-1.1,2,1.5&range=3&mode=decomp&closed
http://textbooks.math.gatech.edu/ila/demos/projection.html?u1=0,1.1,.2&vec=-1.1,2,1.5&range=3&mode=decomp&closed&subname=W


Orthogonal Decomposition
Justification

Theorem
Every vector x in Rn can be written as

x = xW + xW⊥

for unique vectors xW in W and xW⊥ in W⊥.

Why?

Uniqueness: suppose x = xW + xW⊥ = x ′W + x ′W⊥ for xW , x ′W in W and
xW⊥ , x ′W⊥ in W⊥. Rewrite:

xW − x ′W = x ′W⊥ − xW⊥ .

The left side is in W , and the right side is in W⊥, so they are both in W ∩W⊥.
But the only vector that is perpendicular to itself is the zero vector! Hence

0 = xW − x ′W =⇒ xW = x ′W

0 = xW⊥ − x ′W⊥ =⇒ xW⊥ = x ′W⊥

Existence: We will compute the orthogonal decomposition later using
orthogonal projections.



Orthogonal Decomposition
Example

Let W be the xy -plane in R3. Then W⊥ is the z-axis.

x =

2
1
3

 =⇒ xW =

2
1
0



xW⊥ =

0
0
3



.

x =

a
b
c

 =⇒ xW =

a
b
0



xW⊥ =

0
0
c



.

This is just decomposing a vector into a “horizontal” component (in the
xy -plane) and a “vertical” component (on the z-axis).

x

xW

xW⊥

W

[interactive]

http://textbooks.math.gatech.edu/ila/demos/projection.html?u1=1,0,0&u2=0,1,0&vec=-1.1,2,1.5&range=3&mode=decomp&closed


Orthogonal Decomposition
Computation?

Problem: Given x and W , how do you compute the decomposition x = xW + xW⊥?

Observation: It is enough to compute xW , because xW⊥ = x − xW .



The ATA Trick

Theorem (The ATA Trick)

Let W be a subspace of Rn, let v1, v2, . . . , vm be a spanning set for W (e.g., a
basis), and let

A =

 | | |
v1 v2 · · · vm
| | |

 .

Then for any x in Rn, the matrix equation

ATAv = AT x (in the unknown vector v)

is consistent, and xW = Av for any solution v .

I Write W as a column space of a matrix A.

I Find a solution v of ATAv = AT x (by row reducing).

I Then xW = Av and xW⊥ = x − xW .

Recipe for Computing x = xW + xW⊥



The ATA Trick
Example

Problem: Compute the orthogonal projection of a vector x = (x1, x2, x3) in R3

onto the xy -plane.

First we need a basis for the xy -plane: let’s choose

e1 =

1
0
0

 e2 =

0
1
0

 A =

 1 0
0 1
0 0

 .

Then

ATA =

(
1 0
0 1

)
= I2 AT

x1

x2

x3

 =

(
1 0 0
0 1 0

)x1

x2

x3

 =

(
x1

x2

)
.

Then ATAv = v and AT x =
(
x1
x2

)
, so the only solution of ATAv = AT x is

v =
(
x1
x2

)
. Therefore,

xW = Av = A

(
x1

x2

)
=

 1 0
0 1
0 0

(x1

x2

)
=

x1

x2

0

 .



The ATA Trick
Another Example

Problem: Let

x =

1
2
3

 W =


x1

x2

x3

 in R3
∣∣ x1 − x2 + x3 = 0

 .

Compute the distance from x to W .

The distance from x to W is ‖xW⊥‖, so we need to compute the orthogonal
projection. First we need a basis for W = Nul

(
1 −1 1

)
. This matrix is in

RREF, so the parametric form of the solution set is

x1 = x2 − x3

x2 = x2

x3 = x3

PVF

x1

x2

x3

 = x2

1
1
0

+ x3

−1
0
1

 .

Hence we can take a basis to be
1

1
0

 ,

−1
0
1

 A =

 1 −1
1 0
0 1





The ATA Trick
Another Example, Continued

Problem: Let

x =

1
2
3

 W =


x1

x2

x3

 in R3
∣∣ x1 − x2 + x3 = 0

 .

Compute the distance from x to W .

We compute

ATA =

(
2 −1
−1 2

)
AT x =

(
3
2

)
.

To solve ATAv = AT x we form an augmented matrix and row reduce:(
2 −1 3
−1 2 2

)
RREF

(
1 0 8/3
0 1 7/3

)
v =

1

3

(
8
7

)
.

xW = Av =
1

3

1
8
7

 xW⊥ = x − xW =
1

3

 2
−2
2

 .

The distance is ‖xW⊥‖ = 1
3

√
4 + 4 + 4 ≈ 1.155.

[interactive]

http://textbooks.math.gatech.edu/ila/demos/projection.html?u1=1,0,-1&u2=-1,-2,-1&vec=1,2,3&labels=v1,v2&range=3.5&closed&mode=decomp


The ATA Trick
Proof

Theorem (The ATA Trick)

Let W be a subspace of Rn, let v1, v2, . . . , vm be a spanning set for W (e.g., a
basis), and let

A =

 | | |
v1 v2 · · · vm
| | |

 .

Then for any x in Rn, the matrix equation

ATAv = AT x (in the unknown vector v)

is consistent, and xW = Av for any solution v .

Proof:

Let x = xW + xW⊥ . Then xW⊥ is in W⊥ = Nul(AT ), so AT xW⊥ = 0.
Hence

AT x = AT (xW + xW⊥) = AT xW + AT xW⊥ = AT xW .

Since xW is in W = Span{v1, v2, . . . , vm}, we can write

xW = c1v1 + c2v2 + · · ·+ cmvm.

If v = (c1, c2, . . . , cm) then Av = xW , so

AT x = AT xW = ATAv .



Orthogonal Projection onto a Line

Problem: Let L = Span{u} be a line in Rn and let x be a vector in Rn.
Compute xL.

We have to solve uTuv = uT x , where u is an n × 1 matrix. But uTu = u · u
and uT x = u · x are scalars, so

v =
u · x
u · u =⇒ xL = uv =

u · x
u · u u.

The projection of x onto a line L = Span{u} is

xL =
u · x
u · u u xL⊥ = x − xL.

Projection onto a Line

L

u

x

xL =
u · x
u · u

u

xL⊥



Orthogonal Projection onto a Line
Example

Problem: Compute the orthogonal projection of x =
(−6

4

)
onto the line L

spanned by u =
(

3
2

)
, and find the distance from u to L.

xL =
x · u
u · u u =

−18 + 8

9 + 4

(
3
2

)
= −10

13

(
3
2

)
xL⊥ = x − xL =

1

13

(
−48
72

)
.

The distance from x to L is

‖xL⊥‖ =
1

13

√
482 + 722 ≈ 6.656.

L

(
3
2

)
(
−6
4

)

−
10

13

(
3
2

)

[interactive]

http://textbooks.math.gatech.edu/ila/demos/projection.html?u1=3,2&vec=-6,4&labels=u&closed&mode=distance


Summary

Let W be a subspace of Rn.

I The orthogonal complement W⊥ is the set of all vectors orthogonal to
everything in W .

I We have (W⊥)⊥ = W and dimW + dimW⊥ = n.

I RowA = ColAT , (RowA)⊥ = NulA, RowA = (NulA)⊥,
(ColA)⊥ = NulAT , ColA = (NulAT )⊥.

I Orthogonal decomposition: any vector x in Rn can be written in a
unique way as x = xW + xW⊥ for xW in W and xW⊥ in W⊥. The vector
xW is the orthogonal projection of x onto W .

I The vector xW is the closest point to x in W : it is the best approximation.

I The distance from x to W is ‖xW⊥‖.
I If W = ColA then to compute xW , solve the equation ATAv = AT x ; then

xW = Av .

I If W = L = Span{u} is a line then xL = u·x
u·u u.


