Eigenvectors and Eigenvalues Reminder

Definition

Let A be an $n \times n$ matrix.

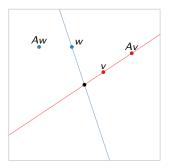
- 1. An **eigenvector** of A is a nonzero vector v in \mathbf{R}^n such that $Av = \lambda v$, for some λ in \mathbf{R} .
- 2. An **eigenvalue** of A is a number λ in $\mathbf R$ such that the equation $Av = \lambda v$ has a nontrivial solution.
- 3. If λ is an eigenvalue of A, the λ -eigenspace is the solution set of $(A \lambda I_n)x = 0$.

Eigenspaces Geometry

Eigenvectors, geometrically

An eigenvector of a matrix A is a nonzero vector v such that:

- ightharpoonup Av is a multiple of v, which means
- ightharpoonup Av is collinear with v, which means
- Av and v are on the same line through the origin.

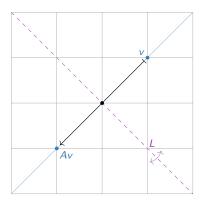


v is an eigenvector

w is not an eigenvector

Let $T: \mathbf{R}^2 \to \mathbf{R}^2$ be reflection over the line L defined by y = -x, and let A be the matrix for T.

Question: What are the eigenvalues and eigenspaces of A? No computations!

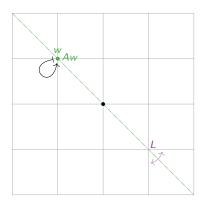


Does anyone see any eigenvectors (vectors that don't move off their line)?

v is an eigenvector with eigenvalue -1.

Let $T: \mathbf{R}^2 \to \mathbf{R}^2$ be reflection over the line L defined by y = -x, and let A be the matrix for T.

Question: What are the eigenvalues and eigenspaces of A? No computations!

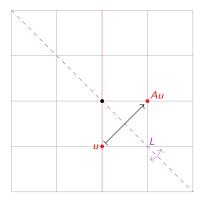


Does anyone see any eigenvectors (vectors that don't move off their line)?

 $\it w$ is an eigenvector with eigenvalue 1.

Let $T: \mathbf{R}^2 \to \mathbf{R}^2$ be reflection over the line L defined by y = -x, and let A be the matrix for T.

Question: What are the eigenvalues and eigenspaces of A? No computations!

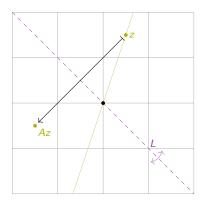


Does anyone see any eigenvectors (vectors that don't move off their line)?

u is not an eigenvector.

Let $T \colon \mathbf{R}^2 \to \mathbf{R}^2$ be reflection over the line L defined by y = -x, and let A be the matrix for T.

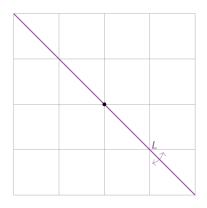
Question: What are the eigenvalues and eigenspaces of A? No computations!



Does anyone see any eigenvectors (vectors that don't move off their line)? Neither is z.

Let $T \colon \mathbf{R}^2 \to \mathbf{R}^2$ be reflection over the line L defined by y = -x, and let A be the matrix for T.

Question: What are the eigenvalues and eigenspaces of A? No computations!

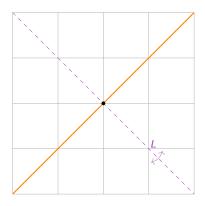


Does anyone see any eigenvectors (vectors that don't move off their line)?

The 1-eigenspace is L (all the vectors x where Ax = x).

Let $T \colon \mathbf{R}^2 \to \mathbf{R}^2$ be reflection over the line L defined by y = -x, and let A be the matrix for T.

Question: What are the eigenvalues and eigenspaces of A? No computations!

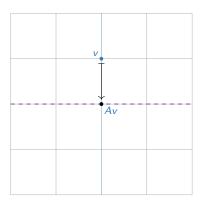


Does anyone see any eigenvectors (vectors that don't move off their line)?

The (-1)-eigenspace is the line y = x (all the vectors x where Ax = -x).

Let $T \colon \mathbf{R}^2 \to \mathbf{R}^2$ be the vertical projection onto the x-axis, and let A be the matrix for T.

Question: What are the eigenvalues and eigenspaces of A? No computations!

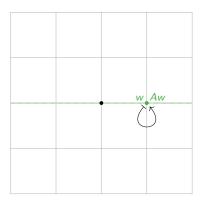


Does anyone see any eigenvectors (vectors that don't move off their line)?

v is an eigenvector with eigenvalue 0.

Let $T: \mathbf{R}^2 \to \mathbf{R}^2$ be the vertical projection onto the x-axis, and let A be the matrix for T.

Question: What are the eigenvalues and eigenspaces of A? No computations!

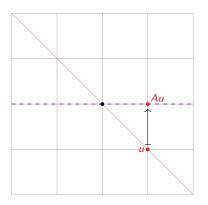


Does anyone see any eigenvectors (vectors that don't move off their line)?

 $\it w$ is an eigenvector with eigenvalue 1.

Let $T \colon \mathbf{R}^2 \to \mathbf{R}^2$ be the vertical projection onto the x-axis, and let A be the matrix for T.

Question: What are the eigenvalues and eigenspaces of A? No computations!

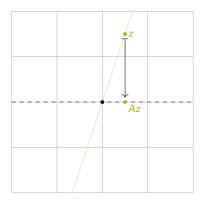


Does anyone see any eigenvectors (vectors that don't move off their line)?

u is *not* an eigenvector.

Let $T: \mathbf{R}^2 \to \mathbf{R}^2$ be the vertical projection onto the x-axis, and let A be the matrix for T.

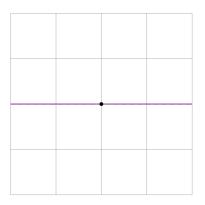
Question: What are the eigenvalues and eigenspaces of A? No computations!



Does anyone see any eigenvectors (vectors that don't move off their line)? Neither is z.

Let $T: \mathbf{R}^2 \to \mathbf{R}^2$ be the vertical projection onto the x-axis, and let A be the matrix for T.

Question: What are the eigenvalues and eigenspaces of A? No computations!

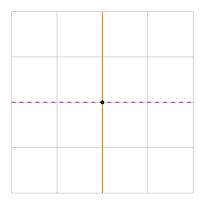


Does anyone see any eigenvectors (vectors that don't move off their line)?

The 1-eigenspace is the x-axis (all the vectors x where Ax = x).

Let $T \colon \mathbf{R}^2 \to \mathbf{R}^2$ be the vertical projection onto the x-axis, and let A be the matrix for T.

Question: What are the eigenvalues and eigenspaces of A? No computations!



Does anyone see any eigenvectors (vectors that don't move off their line)?

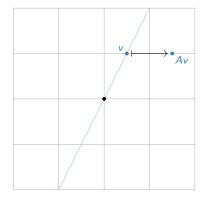
The 0-eigenspace is the *y*-axis (all the vectors x where Ax = 0x).

Let

$$A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix},$$

so T(x) = Ax is a shear in the x-direction.

Question: What are the eigenvalues and eigenspaces of A? No computations!



Does anyone see any eigenvectors (vectors that don't move off their line)?

Vectors v above the x-axis are moved right but not up...

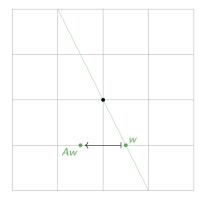
so they're not eigenvectors.

Let

$$A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix},$$

so T(x) = Ax is a shear in the x-direction.

Question: What are the eigenvalues and eigenspaces of A? No computations!



Does anyone see any eigenvectors (vectors that don't move off their line)?

Vectors w below the x-axis are moved left but not down...

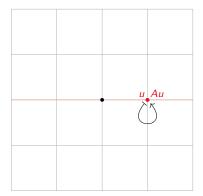
so they're not eigenvectors

Let

$$A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix},$$

so T(x) = Ax is a shear in the x-direction.

Question: What are the eigenvalues and eigenspaces of A? No computations!



Does anyone see any eigenvectors (vectors that don't move off their line)?

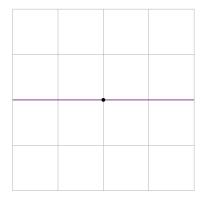
 $\it u$ is an eigenvector with eigenvalue 1.

Let

$$A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix},$$

so T(x) = Ax is a shear in the x-direction.

Question: What are the eigenvalues and eigenspaces of A? No computations!



Does anyone see any eigenvectors (vectors that don't move off their line)?

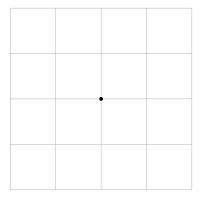
The 1-eigenspace is the x-axis (all the vectors x where Ax = x).

Let

$$A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix},$$

so T(x) = Ax is a shear in the x-direction.

Question: What are the eigenvalues and eigenspaces of A? No computations!



Does anyone see any eigenvectors (vectors that don't move off their line)?

There are no other eigenvectors.

Section 5.2

The Characteristic Polynomial

The Characteristic Polynomial

Let A be a square matrix.

 λ is an eigenvalue of $A \iff Ax = \lambda x$ has a nontrivial solution $\iff (A - \lambda I)x = 0 \text{ has a nontrivial solution}$ $\iff A - \lambda I \text{ is not invertible}$ $\iff \det(A - \lambda I) = 0.$

This gives us a way to compute the eigenvalues of A.

Definition

Let A be a square matrix. The characteristic polynomial of A is

$$f(\lambda) = \det(A - \lambda I).$$

The characteristic equation of A is the equation

$$f(\lambda) = \det(A - \lambda I) = 0.$$

Important

The eigenvalues of A are the roots of the characteristic polynomial $f(\lambda) = \det(A - \lambda I)$.

The Characteristic Polynomial Example

Question: What are the eigenvalues of

$$A = \begin{pmatrix} 5 & 2 \\ 2 & 1 \end{pmatrix}?$$

The Characteristic Polynomial Example

Question: What is the characteristic polynomial of

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}?$$

What do you notice about $f(\lambda)$?

- ▶ The constant term is det(A), which is zero if and only if $\lambda = 0$ is a root.
- ▶ The linear term -(a+d) is the negative of the sum of the diagonal entries of A

Definition

The trace of a square matrix A is Tr(A) = sum of the diagonal entries of A.

Shortcut

The characteristic polynomial of a 2×2 matrix A is $f(\lambda) = \lambda^2 - \mathrm{Tr}(A) \, \lambda + \det(A).$

$$f(\lambda) = \lambda^2 - \mathsf{Tr}(A)\,\lambda + \mathsf{det}(A)$$

The Characteristic Polynomial Example

Question: What are the eigenvalues of the rabbit population matrix

$$A = \begin{pmatrix} 0 & 6 & 8 \\ \frac{1}{2} & 0 & 0 \\ 0 & \frac{1}{2} & 0 \end{pmatrix}?$$

Factoring the Characteristic Polynomial

It's easy to factor quadraic polynomials:

$$x^2 + bx + c = 0 \implies x = \frac{-b \pm \sqrt{b^2 - 4c}}{2}.$$

It's less easy to factor cubics, quartics, and so on:

$$x^{3} + bx^{2} + cx + d = 0 \implies x = ????$$

 $x^{4} + bx^{3} + cx^{2} + dx + e = 0 \implies x = ???$

Read about factoring polynomials by hand in $\S 5.2.$

Summary

We did two different things today.

First we talked about the geometry of eigenvalues and eigenvectors:

- ► Eigenvectors are vectors *v* such that *v* and *Av* are on the same line through the origin.
- You can pick out the eigenvectors geometrically if you have a picture of the associated transformation.

Then we talked about characteristic polynomials:

- We learned to find the eigenvalues of a matrix by computing the roots of the characteristic polynomial $p(\lambda) = \det(A \lambda I)$.
- ▶ For a 2×2 matrix A, the characteristic polynomial is just

$$p(\lambda) = \lambda^2 - \text{Tr}(A)\lambda + \text{det}(A).$$