Chapter 5

Eigenvalues and Eigenvectors

Section 5.1

Eigenvalues and Eigenvectors

In a population of rabbits:

- 1. half of the newborn rabbits survive their first year;
- 2. of those, half survive their second year;
- 3. their maximum life span is three years;
- 4. rabbits have 0, 6, 8 baby rabbits in their three years, respectively.

If you know the population one year, what is the population the next year?

$$f_n = \text{first-year rabbits in year } n$$

 $s_n = \text{second-year rabbits in year } n$
 $t_n = \text{third-year rabbits in year } n$

The rules say:

$$\begin{pmatrix} 0 & 6 & 8 \\ \frac{1}{2} & 0 & 0 \\ 0 & \frac{1}{2} & 0 \end{pmatrix} \begin{pmatrix} f_n \\ s_n \\ t_n \end{pmatrix} = \begin{pmatrix} f_{n+1} \\ s_{n+1} \\ t_{n+1} \end{pmatrix}.$$

Let
$$A = \begin{pmatrix} 0 & 6 & 8 \\ \frac{1}{2} & 0 & 0 \\ 0 & \frac{1}{n} & 0 \end{pmatrix}$$
 and $v_n = \begin{pmatrix} f_n \\ s_n \\ t_n \end{pmatrix}$. Then $Av_n = v_{n+1}$. \leftarrow difference equation

A Biology Question Continued

If you know v_0 , what is v_{10} ?

$$v_{10} = Av_9 = AAv_8 = \cdots = A^{10}v_0.$$

This makes it easy to compute examples by computer: [interactive]

V 0	<i>V</i> ₁₀	<i>V</i> ₁₁
/3\	/30189\	/ 61316\
(7)	7761	15095
\9 <i>]</i>	\ 1844 <i>]</i>	\ 3881 <i>]</i>
/1	/9459\	(19222)
(2)	2434	4729
(3)	\ 577 <i>]</i>	\ 1217 <i>]</i>
(4)	/28856\	/58550\
(7)	7405	14428
\8 <i>)</i>	\ 1765 <i>]</i>	\ 3703 <i>]</i>

What do you notice about these numbers?

- 1. Eventually, each segment of the population doubles every year: $Av_n = v_{n+1} = 2v_n$.
- 2. The ratios get close to (16:4:1):

$$v_n = (\text{scalar}) \cdot \begin{pmatrix} 16 \\ 4 \\ 1 \end{pmatrix}.$$

Translation: 2 is an eigenvalue, and $\begin{pmatrix} 16\\4\\1 \end{pmatrix}$ is an eigenvector!

Eigenvectors and Eigenvalues

Definition

Let A be an $n \times n$ matrix.

Eigenvalues and eigenvectors are only for square matrices.

1. An **eigenvector** of A is a *nonzero* vector v in \mathbb{R}^n such that $Av = \lambda v$, for some λ in \mathbb{R} . In other words, Av is a multiple of v.

2. An **eigenvalue** of A is a number λ in $\mathbf R$ such that the equation $Av = \lambda v$ has a *nontrivial* solution.

If $Av = \lambda v$ for $v \neq 0$, we say λ is the **eigenvalue for** v, and v is an **eigenvector for** λ .

Note: Eigenvectors are by definition nonzero. Eigenvalues may be equal to zero.

This is the most important definition in the course.

Verifying Eigenvectors

Example

$$A = \begin{pmatrix} 0 & 6 & 8 \\ \frac{1}{2} & 0 & 0 \\ 0 & \frac{1}{2} & 0 \end{pmatrix} \qquad v = \begin{pmatrix} 16 \\ 4 \\ 1 \end{pmatrix}$$

Multiply:

$$Av =$$

Hence v is an eigenvector of A, with eigenvalue $\lambda = 2$.

Example

$$A = \begin{pmatrix} 2 & 2 \\ -4 & 8 \end{pmatrix} \qquad v = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

Multiply:

$$Av =$$

Hence ν is an eigenvector of A, with eigenvalue $\lambda = 4$.

Verifying Eigenvalues

Question: Is
$$\lambda = 3$$
 an eigenvalue of $A = \begin{pmatrix} 2 & -4 \\ -1 & -1 \end{pmatrix}$?

In other words, does Av = 3v have a nontrivial solution?

...does Av - 3v = 0 have a nontrivial solution?

... does (A - 3I)v = 0 have a nontrivial solution?

We know how to answer that! Row reduction!

$$A - 3I =$$

Eigenspaces

Definition

Let A be an $n \times n$ matrix and let λ be an eigenvalue of A. The λ -eigenspace of A is the set of all eigenvectors of A with eigenvalue λ , plus the zero vector:

$$\begin{split} \lambda\text{-eigenspace} &= \big\{ v \text{ in } \mathbf{R}^n \mid Av = \lambda v \big\} \\ &= \big\{ v \text{ in } \mathbf{R}^n \mid (A - \lambda I)v = 0 \big\} \\ &= \mathsf{Nul} \big(A - \lambda I \big). \end{split}$$

Since the λ -eigenspace is a null space, it is a *subspace* of \mathbb{R}^n .

How do you find a basis for the λ -eigenspace? Parametric vector form!

Eigenspaces Example

Find a basis for the 3-eigenspace of

$$A = \begin{pmatrix} 2 & -4 \\ -1 & -1 \end{pmatrix}.$$

Eigenspaces Example

Find a basis for the 2-eigenspace of

$$A = \begin{pmatrix} 7/2 & 0 & 3 \\ -3/2 & 2 & -3 \\ -3/2 & 0 & -1 \end{pmatrix}.$$

Eigenspaces Example

Find a basis for the $\frac{1}{2}$ -eigenspace of

$$A = \begin{pmatrix} 7/2 & 0 & 3 \\ -3/2 & 2 & -3 \\ -3/2 & 0 & -1 \end{pmatrix}.$$

$$A = \begin{pmatrix} 7/2 & 0 & 3 \\ -3/2 & 2 & -3 \\ -3/2 & 0 & -1 \end{pmatrix}.$$

We computed bases for the 2-eigenspace and the 1/2-eigenspace:

2-eigenspace:
$$\left\{ \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} -2 \\ 0 \\ 1 \end{pmatrix} \right\}$$
 $\frac{1}{2}$ -eigenspace: $\left\{ \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix} \right\}$

Hence the 2-eigenspace is a plane and the 1/2-eigenspace is a line.

Let A be an $n \times n$ matrix and let λ be a number.

- 1. λ is an eigenvalue of A if and only if $(A \lambda I)x = 0$ has a nontrivial solution, if and only if $\text{Nul}(A \lambda I) \neq \{0\}$.
- 2. In this case, finding a basis for the λ -eigenspace of A means finding a basis for Nul $(A-\lambda I)$ as usual, i.e. by finding the parametric vector form for the general solution to $(A-\lambda I)x=0$.
- 3. The eigenvectors with eigenvalue λ are the nonzero elements of Nul($A \lambda I$), i.e. the nontrivial solutions to $(A \lambda I)x = 0$.

The Eigenvalues of a Triangular Matrix are the Diagonal Entries

We've seen that finding eigenvectors for a given eigenvalue is a row reduction problem.

Finding all of the eigenvalues of a matrix is not a row reduction problem! We'll see how to do it in general next time. For now:

Fact: The eigenvalues of a triangular matrix are the diagonal entries.

A Matrix is Invertible if and only if Zero is not an Eigenvalue

Fact: A is invertible if and only if 0 is not an eigenvalue of A.

Eigenvectors with Distinct Eigenvalues are Linearly Independent

Fact: If v_1, v_2, \ldots, v_k are eigenvectors of A with distinct eigenvalues $\lambda_1, \ldots, \lambda_k$, then $\{v_1, v_2, \ldots, v_k\}$ is linearly independent.

Why? If k = 2, this says v_2 can't lie on the line through v_1 .

But the line through v_1 is contained in the λ_1 -eigenspace, and v_2 does not have eigenvalue λ_1 .

In general: see $\S 5.1$ (or work it out for yourself; it's not too hard).

Consequence: An $n \times n$ matrix has at most n distinct eigenvalues.

Addenda

We have a couple of new ways of saying "A is invertible" now:

The Invertible Matrix Theorem

Let A be a square $n \times n$ matrix, and let $T: \mathbb{R}^n \to \mathbb{R}^n$ be the linear transformation T(x) = Ax. The following statements are equivalent.

1. A is invertible.

- 2. T is invertible.
- 3. The reduced row echelon form of A is I_n .
- 4. A has n pivots.
- 5. Ax = 0 has no solutions other than the trivial one.
- 6. $Nul(A) = \{0\}.$
- 7. $\operatorname{nullity}(A) = 0$.
- 8. The columns of \boldsymbol{A} are linearly independent.
- 9. The columns of A form a basis for \mathbb{R}^n .
- 10 T is one-to-one

- 11. Ax = b is consistent for all b in \mathbb{R}^n .
- 12. Ax = b has a unique solution for each b in \mathbb{R}^n .
- 13. The columns of A span \mathbb{R}^n .
- 14. Col $A = \mathbb{R}^n$.
- 15. $\dim \operatorname{Col} A = n$.
- 16. rank A = n.
- 17. T is onto.
- 18. There exists a matrix B such that $AB = I_n$.
- 19. There exists a matrix B such that $BA = I_n$.
- 20. The determinant of A is not equal to zero.
- 21. The number 0 is *not* an eigenvalue of A.

Summary

- Eigenvectors and eigenvalues are the most important concepts in this course.
- ▶ Eigenvectors are by definition nonzero; eigenvalues may be zero.
- ▶ The eigenvalues of a triangular matrix are the diagonal entries.
- ▶ A matrix is invertible if and only if zero is not an eigenvalue.
- ▶ Eigenvectors with distinct eigenvalues are linearly independent.
- ▶ The λ -eigenspace is the set of all λ -eigenvectors, plus the zero vector.
- You can compute a basis for the λ -eigenspace by finding the parametric vector form of the solutions of $(A \lambda I_n)x = 0$.