Section 2.6

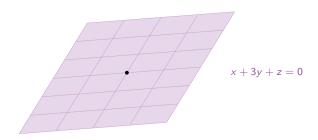
Subspaces

Motivation

Today we will discuss **subspaces** of \mathbb{R}^n .

A subspace turns out to be the same as a span, except we don't know *which* vectors it's the span of.

This arises naturally when you have, say, a plane through the origin in \mathbb{R}^3 which is *not* defined (a priori) as a span, but you still want to say something about it.



Definition of Subspace

Definition

A **subspace** of \mathbb{R}^n is a subset V of \mathbb{R}^n satisfying:

- 1. The zero vector is in V.
- 2. If u and v are in V, then u + v is also in V.
- 3. If u is in V and c is in \mathbf{R} , then cu is in V.

"not empty"

"closed under addition"

"closed under \times scalars"

```
Every subspace is a span, and every span is a subspace.
```

A subspace is a span of some vectors, but you haven't computed what those vectors are yet.

Definition of Subspace

Definition

A **subspace** of \mathbb{R}^n is a subset V of \mathbb{R}^n satisfying:

- The zero vector is in V. "not empty"
 If u and v are in V, then u + v is also in V. "closed under addition"
- 3. If u is in V and c is in \mathbb{R} , then cu is in V. "closed under \times scalars"

What does this mean?

- ► If v is in V, then all scalar multiples of v are in V by (3). In other words, the line through any nonzero vector in V is also in V.
- If u, v are in V, then cu and dv are in V for any scalars c, d by (3). So cu + dv is in V by (2). So Span{u, v} is contained in V.
- Likewise, if v_1, v_2, \ldots, v_n are all in V, then $Span\{v_1, v_2, \ldots, v_n\}$ is contained in V: a subspace contains the span of any set of vectors in it.

If you pick enough vectors in V, eventually their span will fill up V, so:

A subspace is a span of some set of vectors in it.

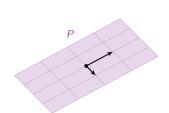
Examples

Example

A line L through the origin is a subspace: L contains zero and is easily seen to be closed under addition and scalar multiplication.

Example

A plane P through the origin is a subspace: P contains zero; the sum of two vectors in P is also in P; and any scalar multiple of a vector in P is also in P.



Example

All of \mathbb{R}^n : this contains 0, and is closed under addition and scalar multiplication.

Example

The subset $\{0\}$: this subspace contains only one vector.

Note these are all pictures of spans! (Line, plane, space, etc.)

Subsets and Subspaces They aren't the same thing

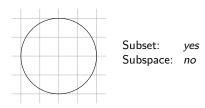
A **subset** of \mathbb{R}^n is any collection of vectors in \mathbb{R}^n whatsoever. For example, the unit circle

$$C = \{(x, y) \text{ in } \mathbb{R}^2 \mid x^2 + y^2 = 1\}$$

is a subset of \mathbb{R}^2 , but it is not a subspace.

All of the following non-examples on the next slide are still subsets.

A **subspace** is a special kind of subset, that satisfies the three defining properties.



Non-Examples

Non-Example

A line *L* (or any other set) that doesn't contain the origin is not a subspace. Fails: 1.

Non-Example

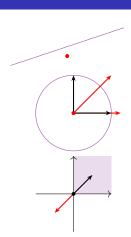
A circle *C* is not a subspace. Fails: 1,2,3. Think: a circle isn't a "linear space."

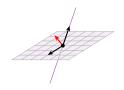
Non-Example

The first quadrant in \mathbf{R}^2 is not a subspace. Fails: 3 only.

Non-Example

A line union a plane in \mathbb{R}^3 is not a subspace. Fails: 2 only.





Subspaces are Spans, and Spans are Subspaces

Theorem

Any Span $\{v_1, v_2, \dots, v_p\}$ is a subspace.

Every subspace is a span, and every span is a subspace.

Definition

If $V = \operatorname{Span}\{v_1, v_2, \dots, v_p\}$, we say that V is the subspace **generated by** or **spanned by** the vectors v_1, v_2, \dots, v_p . We call $\{v_1, v_2, \dots, v_p\}$ a **spanning set** for V.

Let
$$V = \left\{ \begin{pmatrix} a \\ b \end{pmatrix}$$
 in $\mathbf{R}^2 \mid ab = 0 \right\}$. Let's check if V is a subspace or not.

We conclude that V is *not* a subspace. A picture is above. (It doesn't look like a span.)

Column Space and Null Space

An $m \times n$ matrix A naturally gives rise to *two* subspaces.

Definition

- ► The column space of A is the subspace of R^m spanned by the columns of A. It is written Col A.
- ▶ The **null space** of *A* is the set of all solutions of the homogeneous equation Ax = 0:

$$\operatorname{Nul} A = \{x \text{ in } \mathbf{R}^n \mid Ax = 0\}.$$

This is a subspace of \mathbb{R}^n .

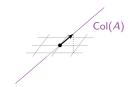
The column space is defined as a span, so we know it is a subspace.

Check that the null space is a subspace:

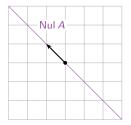
$\begin{array}{c} \text{Column Space and Null Space} \\ \text{$_{\text{Example}}$} \end{array}$

Let
$$A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{pmatrix}$$
.

Let's compute the column space:



Let's compute the null space:



The Null Space is a Span

The column space of a matrix A is defined to be a span (of the columns).

The null space is defined to be the solution set to Ax = 0. It is a subspace, so it is a span.

Question

How to find vectors that span the null space?

Answer: Parametric vector form! We know that the solution set to Ax = 0 has a parametric form that looks like

$$x_3 \begin{pmatrix} 1 \\ 2 \\ 1 \\ 0 \end{pmatrix} + x_4 \begin{pmatrix} -2 \\ 3 \\ 0 \\ 1 \end{pmatrix} \quad \begin{array}{l} \text{if, say, } x_3 \text{ and } x_4 \\ \text{are the free} \\ \text{variables. So} \end{array} \quad \text{Nul } A = \operatorname{Span} \left\{ \begin{pmatrix} 1 \\ 2 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} -2 \\ 3 \\ 0 \\ 1 \end{pmatrix} \right\}.$$

Refer back to the slides for §2.4 (Solution Sets).

Note: It is much easier to define the null space first as a subspace, then find spanning vectors *later*, if we need them. This is one reason subspaces are so useful.

Subspaces Summary

- A subspace is the same as a span of some number of vectors, but we haven't computed the vectors yet.
- To any matrix is associated two subspaces, the column space and the null space:

Col A = the span of the columns of ANul A = the solution set of Ax = 0.

How do you check if a subset is a subspace?

- ▶ Is it a span? Can it be written as a span?
- Can it be written as the column space of a matrix?
- ► Can it be written as the null space of a matrix?
- ▶ Is it all of Rⁿ or the zero subspace {0}?
- Can it be written as a type of subspace that we'll learn about later (eigenspaces, ...)?

If so, then it's automatically a subspace.

If all else fails:

Can you verify directly that it satisfies the three defining properties?