1. True or false: If v_1 and v_2 are linearly independent eigenvectors of an $n \times n$ matrix A, then they must correspond to different eigenvalues.

- **2.** In what follows, *T* is a linear transformation with matrix *A*. Find the eigenvectors and eigenvalues of *A* without doing any matrix calculations. (Draw a picture!)
 - a) $T: \mathbb{R}^3 \to \mathbb{R}^3$ that projects vectors onto the xz-plane in \mathbb{R}^3 .

b) $T: \mathbb{R}^2 \to \mathbb{R}^2$ that reflects vectors over the line y = 2x in \mathbb{R}^2 .

3. True or False: Suppose
$$A = \begin{pmatrix} 3 & 0 & 0 \\ 5 & 1 & 0 \\ -10 & 4 & 7 \end{pmatrix}$$
. Then the characteristic polynomial of A is
$$\det(A - \lambda I) = (3 - \lambda)(1 - \lambda)(7 - \lambda).$$

4. Find the eigenvalues and a basis for each eigenspace of
$$A = \begin{pmatrix} 2 & 3 & 1 \\ 3 & 2 & 4 \\ 0 & 0 & -1 \end{pmatrix}$$
.