1. True or false: If v_1 and v_2 are linearly independent eigenvectors of an $n \times n$ matrix *A*, then they must correspond to different eigenvalues.

Solution.

False. For example, if $A = I_2$ then e_1 and e_2 are linearly independent eigenvectors both corresponding to the eigenvalue $\lambda = 1$.

- **2.** In what follows, *T* is a linear transformation with matrix *A*. Find the eigenvectors and eigenvalues of *A* without doing any matrix calculations. (Draw a picture!)
	- **a**) $T: \mathbb{R}^3 \to \mathbb{R}^3$ that projects vectors onto the *xz*-plane in \mathbb{R}^3 .
	- **b**) $T: \mathbb{R}^2 \to \mathbb{R}^2$ that reflects vectors over the line $y = 2x$ in \mathbb{R}^2 .

Solution.

a) We draw the *xz*-plane below.

 $T(x, y, z) = (x, 0, z)$, so *T* fixes every vector in the *xz*-plane and destroys every vector of the form $(0, a, 0)$ with *a* real. Therefore, $\lambda = 1$ and $\lambda = 0$ are eigenvalues and in fact they are the only eigenvalues since their combined eigenvectors span all of **R** 3 .

The eigenvectors for $\lambda = 1$ are all vectors of the form $\begin{pmatrix} x \ 0 \end{pmatrix}$ 0 *z* ! where at least one of *x* and *z* is nonzero, and the eigenvectors for $\lambda = 0$ are all vectors of the form $\begin{pmatrix} 0 \\ y \end{pmatrix}$ *y* 0 ! where $y \neq 0$. In other words: $\sqrt{0}$

The 1-eigenspace consists of all vectors in Span $\left\{\begin{pmatrix} 1 & 0 & 0 \ 0 & 1 & 0 \end{pmatrix}\right\}$ 0 ! , 0 1 \setminus , while the 0 eigenspace consists of all vectors in Span $\left\{\begin{pmatrix} 0 \ 1 \end{pmatrix}\right\}$ 0 \setminus

b) Here is the picture:

T fixes every vector along the line $y = 2x$, so $\lambda = 1$ is an eigenvalue and its eigenvectors are all vectors *t* 2*t* where $t \neq 0$. *T* flips every vector along the line perpendicular to $y = 2x$, which is $y = -\frac{1}{2}$ $rac{1}{2}x$ (for example, $T(-2, 1) = (2, -1)$). Therefore, $\lambda = -1$ is an eigenvalue and its eigenvectors are all vectors of the form *s* where $s \neq 0$.

 $-\frac{1}{2}$ $\frac{1}{2}$ *s* **3.** True or False: Suppose $A =$ $(3 \ 0 \ 0)$ 5 1 0 $\begin{pmatrix} 3 & 0 & 0 \\ 5 & 1 & 0 \\ -10 & 4 & 7 \end{pmatrix}$. Then the characteristic polynomial of

A is

$$
\det(A - \lambda I) = (3 - \lambda)(1 - \lambda)(7 - \lambda).
$$

Solution.

Yes. Since *A*−*λI* is triangular, its determinant is the product of its diagonal entries.

4. Find the eigenvalues and a basis for each eigenspace of *A* = $\begin{pmatrix} 2 & 3 & 1 \end{pmatrix}$ 3 2 4 $0 \t 0 \t -1$! .

Solution.

We solve $0 = \det(A - \lambda I)$.

$$
0 = \det \begin{pmatrix} 2 - \lambda & 3 & 1 \\ 3 & 2 - \lambda & 4 \\ 0 & 0 & -1 - \lambda \end{pmatrix} = (-1 - \lambda)(-1)^6 \det \begin{pmatrix} 2 - \lambda & 3 \\ 3 & 2 - \lambda \end{pmatrix} = (-1 - \lambda)((2 - \lambda)^2 - 9)
$$

= (-1 - \lambda)(\lambda^2 - 4\lambda - 5) = -(\lambda + 1)^2(\lambda - 5).

So $\lambda = -1$ and $\lambda = 5$ are the eigenvalues.

$$
\lambda = -1: (A + I \mid 0) = \begin{pmatrix} 3 & 3 & 1 & 0 \\ 3 & 3 & 4 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \xrightarrow{R_2 = R_2 - R_1} \begin{pmatrix} 3 & 3 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \xrightarrow{\text{R}_1 = R_1 - R_2} \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix},
$$

with solution $x_1 = -x_2, x_2 = x_2, x_3 = 0$. The (-1)-eigenspace has basis $\left\{ \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} \right\}.$

$$
\underline{\lambda=5}:
$$

$$
(A-5I \mid 0) = \begin{pmatrix} -3 & 3 & 1 & 0 \\ 3 & -3 & 4 & 0 \\ 0 & 0 & -6 & 0 \end{pmatrix} \xrightarrow{R_2=R_2+R_1} \begin{pmatrix} -3 & 3 & 1 & 0 \\ 0 & 0 & 5 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix} \xrightarrow{R_1=R_1-R_3, R_2=R_2-5R_3} \begin{pmatrix} 1 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix},
$$

with solution $x_1 = x_2$, $x_2 = x_2$, $x_3 = 0$. The 5-eigenspace has basis $\begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$.