Math 1553 Worksheet §3.4-3.6 Solutions

- **1.** True or false. Answer true if the statement is *always* true. Otherwise, answer false. If your answer is false, either give an example that shows it is false or (in the case of an incorrect formula) state the correct formula.
	- **a**) If *A* is an $n \times n$ matrix and the equation $Ax = b$ has at least one solution for each *b* in \mathbb{R}^n , then the solution is *unique* for each *b* in \mathbb{R}^n .
	- **b)** If *A* is a 3 × 4 matrix and *B* is a 4 × 2 matrix, then the linear transformation *Z* defined by $Z(x) = ABx$ has domain \mathbb{R}^3 and codomain \mathbb{R}^2 .
	- **c**) Suppose *A* is an $n \times n$ matrix and every vector in \mathbb{R}^n can be written as a linear combination of the columns of *A*. Then *A* must be invertible.

Solution.

- **a**) True. The first part says the transformation $T(x) = Ax$ is onto. Since A is $n \times n$, then it has *n* pivots. This is the same as saying *A* is invertible, and there is no free variable. Therefore, the equation $Ax = b$ has exactly one solution for each b in \mathbf{R}^n .
- **b**) False. In order for *Bx* to make sense, *x* must be in \mathbb{R}^2 , and so *Bx* is in \mathbb{R}^4 and $A(Bx)$ is in \mathbb{R}^3 . Therefore, the domain of *Z* is \mathbb{R}^2 and the codomain of *Z* is \mathbb{R}^3 .
- **c**) True. If the columns of *A* span \mathbb{R}^n , then *A* is invertible by the Invertible Matrix Theorem. We can also see this directly without quoting the IMT: If the columns of A span \mathbb{R}^n , then A has n pivots, so A has a pivot in each row and column, hence its matrix transformation $T(x) = Ax$ is one-to-one and onto and thus invertible. Therefore, *A* is invertible.
- **2.** *A* is $m \times n$ matrix, *B* is $n \times m$ matrix. Select all correct answers from the box. It is possible to have more than one correct answer.
	- **a)** Suppose *x* is in **R** *^m*. Then *ABx must be* in: $Col(A)$, $Nul(A)$, $Col(B)$, $Nul(B)$
	- **b**) Suppose x in \mathbb{R}^n . Then *BAx must be* in: Col(A), $Null(A)$, Col(B), $Null(B)$

- **d**) If $m > n$, then columns of *BA* could be linearly *independent*, *dependent*
- **e**) If $m > n$ and $Ax = 0$ has nontrivial solutions, then columns of *BA* could be linearly *independent*, *dependent*

Solution.

Recall, *AB* can be computed as *A* multiplying every column of *B*. That is *AB* = $(Ab_1 \t Ab_2 \t \cdots Ab_m)$ where $B = \begin{pmatrix} b_1 & b_2 & \cdots & b_m \end{pmatrix}$.

- **a**) $| \text{Col}(A) |$. Denote $w := Bx$, which is a vector in \mathbb{R}^n . $ABx = A(Bx)$ is multiplying *A* with *w* which will end up with "linear combination of columns of *A*". So *ABx* is in Col(*A*).
- **b**) $|$ Col(*B*) $|$. Similarly, *BAx* = *B*(*Ax*) is multiplying *B* with *Ax*, a vector in R^m , which will end up with "linear combination of columns of *B*". So *BAx* is in $Col(B)$.
- **c**) $\left| \text{ dependent} \right|$. Since $m > n$ means A matrix can have at most *n* pivots. So $dim(Col(A))$ ≤ *n*. Notice from first question we know Col(*AB*) ⊂ Col(*A*) which has dimension at most *n*. That means *AB* can have at most *n* pivots. But *AB* is *m* × *m* matrix, then columns of *AB* must be dependent.
- **d**) \vert *independent*, *dependent* \vert . Both are possible. Since $m > n$ means *B* matrix can have at most *n* pivots. then $Col(BA) \subset Col(B)$ means *BA* can have at most *n* pivots. Since *BA* is *n* × *n* matrix, then the columns of *BA* will be linearly independent when there are *n* pivots or linearly dependent when there are less than *n* pivots. Here are two examples.

$$
A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix}, B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}, \text{ then } BA = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}
$$

$$
A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}, B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}, \text{ then } BA = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}
$$

e) *dependent* . From the second example above, *BA* has dependent columns, we know "dependent" is one possible answer. Now to see if "independent" is also possible, we need to find out if *BA* could have *n* pivots.

Since $Ax = 0$ has nontrivial solution say x^* , then x^* is also a nontrivial solution of $BAx = 0$. That means BA has free variables, and it can not have *n* pivots. So columns of *BA* must be linearly dependent.

To summarize what we are actually study here, there are several relations between these subspaces. The symbol \subseteq means "is contained in (or possibly equal to)..."

$$
Col(AB) \subseteq Col(A);
$$

\n
$$
Col(BA) \subseteq Col(B);
$$

\n
$$
Null(A) \subseteq Null(BA);
$$

\n
$$
Null(B) \subseteq Null(AB);
$$

3. Consider the following linear transformations:

- $T: \mathbf{R}^3 \longrightarrow \mathbf{R}^2$ *T* projects onto the *xy*-plane, forgetting the *z*-coordinate
- $U: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ *U* rotates clockwise by 90°
- *V* : $\mathbb{R}^2 \longrightarrow \mathbb{R}^2$ *V* scales the *x*-direction by a factor of 2.

Let *A*, *B*, *C* be the matrices for *T*,*U*, *V*, respectively.

- **a)** Write *A*, *B*, and *C*.
- **b**) Compute the matrix for $U \circ V \circ T$.
- **c**) Describe U^{-1} and V^{-1} , and compute their matrices.

Solution.

a) We plug in the unit coordinate vectors:

$$
T(e_1) = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \quad T(e_2) = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \quad T(e_3) = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \quad \Longrightarrow \quad A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}
$$

$$
U(e_1) = \begin{pmatrix} 0 \\ -1 \end{pmatrix} \quad U(e_2) = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \quad \Longrightarrow \quad B = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}.
$$

$$
V(e_1) = \begin{pmatrix} 2 \\ 0 \end{pmatrix} \quad V(e_2) = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \quad \Longrightarrow \quad C = \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}
$$

$$
(0 \quad 1 \quad 0)
$$

- **b**) $BCA =$ $\begin{pmatrix} 0 & 1 & 0 \\ -2 & 0 & 0 \end{pmatrix}$.
- **c**) Intuitively, if we wish to "undo" *U*, we can imagine that $\begin{pmatrix} x \\ y \end{pmatrix}$ *y* λ . To do this, we need to rotate it 90° *counterclockwise*. Therefore, *U*⁻¹ is counterclockwise rotation by 90[°].

Similarly, to undo the transformation *V* that scales the *x*-direction by 2, we need to scale the *x*-direction by 1/2, so V^{-1} scales the *x*-direction by a factor of 1*/*2.

Their matrices are, respectively,

$$
B^{-1} = \frac{1}{0 \cdot 0 - (-1) \cdot 1} \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}
$$

$$
C^{-1} = \frac{1}{0 \cdot 0} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 1/2 & 0 \\ 0 & 1 \end{pmatrix}.
$$

and

$$
C^{-1} = \frac{1}{2 \cdot 1 - 0 \cdot 0} \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix} = \begin{pmatrix} 1/2 & 0 \\ 0 & 1 \end{pmatrix}.
$$